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AFIT/GA/ENG/05-01

Abstract

Currently, the dominant single-point GPS positioning error sources for military

(and some civilian) users are satellite position and clock error. Any improvement

in satellite and clock accuracy results in a direct benefit to the user. This research

proposes the use of an existing “signal of opportunity” – namely x-ray pulsars – to

improve the accuracy and robustness of the GPS satellite and clock estimation algo-

rithm.

A simulation has been developed to determine the effects of using x-ray pul-

sar measurements on the GPS Operational Control Segment. This simulation uses a

nonlinear batch least-squares approach to estimate the position, velocity, and clock er-

rors of all satellites in the specified GPS constellation at a particular epoch time. Both

pseudorange measurements and time-difference-of-arrival (TDOA) measurements from

pulsars are generated and used. The primary measure of accuracy is a constellation

Signal-In-Space Range Error (SISRE).

Results indicate that marginal SISRE improvements (approximately 1%) can

be achieved if the x-ray detector is accurate to an order of approximately 40 m for the

strongest pulsar. However, increasing the accuracy of the x-ray detector by a factor of

100 can yield accuracy improvements up to 26% over the pseudorange-only based GPS

system. Additionally, results show that using only 1 strong pulsar to create TDOA

observations, may be equivalent to or better than using tens of pulsars with very weak

measurement error statistics. An analysis of the effects of pulsar geometry showed

that the geometry does have a significant impact on the overall system performance.

Finally, the results indicate that using TDOAs in the absence of pseudoranges for a

limited amount of time may aid the OCS in keeping track of the GPS satellites until

the ground station links to the constellation can be reestablished. Preliminary anal-

ysis shows that the benefits of implementing a TDOA scheme is evident for outage

intervals of 20 hours or more.

xi



THE USE OF X-RAY PULSARS FOR AIDING GPS SATELLITE

ORBIT DETERMINATION

I. Introduction

1.1 Overview

The Navstar Global Positioning System (GPS) was originally designed to deliver

to the United States (US) forces a service that could accurately measure their posi-

tion, time, and velocity anywhere on the planet and thus provide a distinct military

advantage. However, GPS has become an integral part of all our lives since initial

operational capability was declared on December 8, 1993 [31]. Areas of influence for

GPS range from vehicle navigation to outdoor sportsman activities to international

banking operations. In the past decade we have seen an increase and even acceleration

of commercial and military applications for GPS. Thus, the requirement for a more

precise GPS system is growing. Increasing the accuracy of each satellite position esti-

mate, via the GPS Operational Control Segment (OCS), will result in improvements

to military and commercial users’ estimates of position, velocity, and time.

1.2 Motivation

This thesis is concerned with the task of increasing GPS navigation accuracy for

all users by decreasing the effects of two satellite based errors: ephemeris error and

satellite clock error. The GPS constellation of satellites encode and broadcast orbital

information, known collectively as the ephemeris, and clock error information down to

GPS receivers in two levels of service: Standard Positioning Service (SPS) and Precise

Positioning Service (PPS). The SPS signal is primarily used by the global civilian

and commercial sectors while PPS is primarily reserved for US (DoD) and (NATO)

military operations. The navigation accuracy of the GPS system is dependent upon

each satellite having a good estimate of GPS constellation time as well as its own
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present position [14]. In order to maintain its specified accuracy requirements of 16 m

50% spherical error probable (SEP)and 100 m 95% 2D-RMS (root mean square) for

the PPS and SPS systems respectively [37], the OCS routinely predicts best estimates

of the current GPS time and satellite positions. Subsequently, the ephemeris and clock

error estimates are uploaded to each satellite on a daily basis [14]. By calculating an

accurate ephemeris, the OCS can precisely estimate the absolute positions of all GPS

satellites. Improving the navigation (ephemeris and clock error) estimates of the GPS

constellation will be directly beneficial to the US military user because the position

and clock errors uplinked to the satellites by the OCS make up the largest error source

degrading the positioning accuracy of GPS for the military PPS signal [31]. Table 1.1

lists the error components of the PPS signal for a typical receiver.

Table 1.1: GPS Signal Error Sources

Error Source Typical Range Error Magnitude (meters,1σ)
for PPS Receiver

Ionospheric 0.01
Tropospheric 0.7

Clock and Ephemeris Error 3.6
Receiver Noise 0.6

Multipath 1.8

The ephemeris and clock error in Table 1.1 can be quantified as the space-based

component of the PPS signal’s error. Together, the GPS satellites’ ephemeris and

clock based errors can be quantified as the Signal-In-Space Range Error (SISRE).

SISRE is a measure of the fidelity of the navigation messages broadcast by the GPS

satellites which includes ephemeris and satellite clock errors [37]. The SISRE val-

ues tell us how clock and ephemeris errors affect range measurements to the satel-

lites. This research will look at reducing SISRE because it represents the clock and

ephemeris error, which as shown in Table 1.1, is the most dominant error source

regarding the accuracy of the PPS signal [31].

This research proposes that absolute position and clock bias estimates of satel-

lites in a constellation can be improved by relating the position of each satellite to the

1-2



positions of other satellites in the geometry. The relative ranges between satellites

can then be used to supplement the orbital data available to the OCS for position

and clock error estimation. Currently, all GPS satellites operate nearly independently

– no intersatellite information is regularly used to generate the ephemeris and clock

errors [14]. Additionally, each satellite is only loosely linked to others in the constella-

tion by virtue of the fact that the pseudoranges to each satellite have the same ground

station receiver clock errors in common. In order to produce an ephemeris and clock

error improvement link between satellites, which would inherently reduce the SISRE,

this thesis will attempt to utilize research being done in the field of pulsar-aided

spacecraft navigation.

Using pulsars to aid in SISRE reduction is ideal for three key reasons. First,

they are naturally occurring; hence, they are freely available for use at any time.

Second, pulsars are spaced throughout the sky in such a manner that several can

be used to make simultaneous TDOA measurements between several clusters of GPS

satellites. Third, because each pulsar is unique and predictable, a pulsar profile can

be made and stored in each GPS satellite for recognition and future use.

1.3 Problem Definition

This effort seeks to improve GPS navigation accuracy using x-ray pulsars to

reduce the GPS constellation’s ephemeris and clock errors. The research seeks to use

the periodic x-ray signals emitted from pulsars in a time-difference-of-arrival (TDOA)

scheme to measure the relative distances between GPS satellites. The intersatellite

range information obtained via TDOA measurements will augment the ground-based

pseudorange measurements already used by the OCS to estimate the ephemeris and

clock error values for the constellation. Improved ephemeris and clock error accuracies

should yield improved navigational precision for military users of the PPS signal and

civilian users of the SPS signal due in part to the inherently lower SISRE components

they produce.
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1.4 Objectives

The primary goal of this research is to investigate the feasibility of using x-

ray signals from pulsars in a TDOA navigation scheme to reduce errors in the OCS

estimates of GPS satellite position and clock bias.

The first objective involves determining the timing accuracy needed to make

pulsars beneficial to the GPS orbit determination problem. The ability to make pre-

cisely timed pulsar measurements is imperative, because the timing errors, measured

in units of time, are scaled by the speed of light in a vacuum (3×108 m/s). For ex-

ample, an overall GPS timing error of 1 microsecond (1×10−6 s) would translate to

an unacceptable GPS satellite position error of 300 m.

Next, a tradeoff study will then be conducted to determine the number of pulsars

needed to justify using the x-ray detectors on GPS satellites for TDOA measurements.

For example, will 1 or 2 pulsars yield desirable results, or will a feasible pulsar-aided

GPS system require several pulsars.

The simulation will then be modified by eliminating all GPS ground links to

study the performance and navigation accuracy of GPS using only x-ray signals from

pulsars in the absence of ground based pseudoranges. Many studies have been con-

ducted to ascertain how the performance of GPS will be affected in the event of ground

station outages [14, 53]. The research will seek to answer the question of whether or

not pulsar TDOA measurements could be used to sustain GPS system navigational

accuracy requirements in the event that the satellites are fully denied access to the

OCS generated ephemeris and clock error updates.

Finally, an analysis of variable pulsar geometry will be conducted. This simu-

lation test will attempt to determine if pulsars located in a dispersed geometry, are

any more beneficial to GPS navigation errors than a geometry where all pulsars are

located in one general galactic direction.
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1.5 Related Research

This section will outline research related to this thesis that has been conducted

or is currently being conducted. Topics to be covered include ongoing efforts to

improve GPS orbit determination/estimation, intersatellite links for a constellation

of satellites, TDOA range measurement techniques, and spacecraft navigation using

x-ray signal measurements from pulsars.

1.5.1 GPS Orbit Determination/Estimation Improvement Background. As

previously stated, the goal of this research is to augment the accuracy of the methods

used to estimate the orbital parameters of the GPS satellites. Currently the 2nd Space

Operations Squadron (2SOPS) of the United States Air Force (USAF) operates and

maintains the GPS constellation at the Master Control Station (MCS). Together

with five other monitor stations this segment of GPS is known as the Operational

Control Segment [30]. It is the responsibility of 2SOPS to monitor the health of

each GPS satellite, carry out orbital maneuvers when necessary, and estimate the

ephemeris and clock errors for each satellite using a Kalman filter. The nature of

the 2SOPS Kalman filter will be discussed in Chapter 2 of this thesis. The MCS has

implemented the results of many Kalman filter studies over the past decade which have

resulted in improvements to its Kalman filter estimation techniques, including the

Clock Improvement Initiative [21], Ephemeris Enhancement Endeavor [12], Accuracy

Improvement Initiative [29], and the GPS OCS Performance Analysis and Reporting

(GOSPAR) project [11]. Each of these improvement projects will be covered in the

sections that follow.

1.5.1.1 Clock Improvement Initiative. In 1994, the MCS undertook

the task of improving GPS timing accuracy and the stability of the composite clock

frequency output [21]. The improvements focused on fine tuning the continuous time

update process noises in the MCS Kalman filter for all GPS satellite frequency stan-

dards. Until October 1994, a constellation-wide frequency standard tuning had never

been attempted [21].
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To provide a stable frequency standard for the GPS satellites, one of two types

of atomic clocks are employed: a Cesium (Cs) or Rubidium (Rb) clock. Each clock

has its strengths and weaknesses. For example, the one-day frequency stability of

a Rb clock state is significantly better than that of a Cs clock [21]. However, Cs

clocks have proven to be more stable for the MCS Kalman filter than their Rb clock

counterparts [21]. Furthermore, Rb clocks have a worse drift rate term than Cs

clocks [21]. The poorer drift rate terms of Rb clocks forced the MCS to look at better

ways to estimate Rb clock states in order to capitalize on their inherently superior

frequency stability [21]. The answer to the Rb clock estimation problem lay in re-

tuning the Rb clock state process noises in the Kalman filter. The endeavor proved a

success. One parameter used to gauge the new estimator’s accuracy lay in the User

Range Accuracy (URA), which is a statistical indicator of the range accuracies a user

can obtain from a particular GPS satellite [1]. Before the re-tuning, URA values were

typically on the order of 5 meters. After the re-tuning effort, URA values dropped to

3.8 meters [21]. The re-tuning technique, based on a Naval Research Lab (NRL) Rb

clock study, was subsequently used to improve the accuracy of all GPS Cs clocks as

well.

1.5.1.2 Ephemeris Enhancement Endeavor. The Ephemeris Enhance-

ment Endeavor (EEE), conducted in 1997, was a comprehensive effort to improve

the MCS Kalman filter’s ability to estimate GPS ephemeris, solar, and clock state

information [12]. In 1996, a 2SOPS Performance Analysis Working Group (PAWG)

identified a periodic 2–3 meter ephemeris estimation error in the MCS Kalman fil-

ter. It was determined that deterministic errors and Kalman filter tuning were the

primary contributors to this periodic effect. The EEE team was formed to identify

and solve the problems leading to the periodic ephemeris error effect [12]. The EEE

team decided to analyze the option of re-tuning the MCS Kalman filter to decrease or

eliminate the periodic error based on the successes of the clock tuning effort of 1994.

Ultimately, the solution lay in calculating new values for the process noises that repre-

1-6



sent radial and along-track perturbations as well as two solar pressure terms, K1 and

K2. The process noises of the Kalman filter account for the errors when propagating

forward in time. The effort to reanalyze the process noise values for these phenomena

and recalculate them proved to be a complete success. 2SOPS documented improve-

ments in the periodic ephemeris error, time transfer error, daily upload prediction

quality and zero age of data error. The EEE also provided the constellation’s lowest

ranging errors in the history of the program [12]. In part, because of EEE, the RMS

SISRE value for PPS dropped from approximately 2.6 m in 1996 to approximately

2.2 m in 1997 [29].

The success of EEE was corroborated in a study conducted in 2003 which sta-

tistically compared the GPS broadcast ephemeris position error to the International

GPS Service for Geodynamics final orbit solution over the entire operational lifetime

of the GPS System (14 November 1993 through 31 December 2002) [37]. The compar-

ison looked at GPS positional errors in the form of ‘orbit-only SISRE’ which accounts

for a satellite’s along-track, cross-track, and radial position but not its clock bias.

During the course of the study it was found that the constellation ‘orbit-only’ SISRE

averaged approximately 1.7 m RMS until 1997 when it dropped to approximately 1.1

m RMS [37]. The drop in SISRE value coincided with the implementation of the

EEE.

1.5.1.3 Accuracy Improvement Initiative . In 1995 the National

Academy of Science’s National Research Council (NRC) published a congressionally

mandated study of recommended technical improvements and augmentations for the

GPS [31]. The recommendations of this report were formally addressed in the Accu-

racy Improvement Initiative (AII) [29]. The AII was a DoD- funded process sponsored

by 2SOPS to look at ways to improve GPS PPS performance for DoD operations in

1997 [29]. The goal of the AII was to decrease RMS SISRE values for MCS Kalman

filter states, thereby improving the broadcast navigation message accuracies. The

product of the AII was a recommendation to make 3 enhancements to the OCS seg-
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ment of GPS. The first suggestion was to include the National Imaging and Mapping

Agency’s (NIMA) six tracking stations in the global network of GPS monitor stations.

The additional monitor stations would fill several global coverage gaps and more than

double the amount of tracking data used in GPS operations. It was estimated that

this proposal alone could improve the accuracy of the MCS Kalman filter by 50% [29].

The second recommendation of the AII advised performing a modification to the MCS

Kalman filter estimation process by eliminating the estimation partition present in

the filter. The partitioned filter was a remnant of the computer storage limitations

faced in the 1980s, when the original OCS software was developed. The AII team

proved that a 10%-15% SISRE performance improvement would be gained due to

the nonpartitioned filter’s ability to decorrelate parameters in the estimation process.

The third proposal suggested a new strategy to upload navigation messages to GPS

satellites in order to reduce prediction errors. The new strategy devised an upload

schedule for all of the satellites based on their need to receive updated navigation

messages. GPS satellite performance is not consistent across the constellation. Some

satellites may require more frequent uploads because of the nature of their active

on-board clock. The new upload schedule addressed problem-oriented satellites by al-

locating more uplink time to those satellites while allowing more predictable satellites

to fly with older data. All scheduled software and hardware upgrades recommended

in the AII report are scheduled for completion in 2005 [20]. When the AII upgrades

are completed, the root mean square SISRE value for GPS is not expected to exceed

1.3 m [24].

1.5.2 Intersatellite Links Background. Ultimately this thesis seeks to treat

the system of GPS satellites as an inter-related network. Intersatellite links are advan-

tageous to constellations because they provide additional measurements of the GPS

satellite positions and clock errors for the MCS Kalman filter. Several studies have

been done involving intersatellite links. The following section will outline research

done at the University of Texas at Austin, the Space Applications Corporation, IBM,
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the National Research Council, and the University of the Federal Armed Forces in

Munich, Germany. Each organization’s research attempted to improve current orbit

determination techniques using intersatellite links.

1.5.2.1 University of Texas at Austin Study. In 1984, research on the

orbit determination of GPS using inter-satellite (cross-link) range measurements was

conducted at the University of Texas at Austin. The experiment used a batch esti-

mation filter with ground-to-satellite (L1/L2) and satellite-to-satellite pseudo-range

measurements as inputs to simulate 18 fully operational satellites. The cross-link mea-

surements were generated in 36-second cycles allowing each GPS satellite an interval

of 1.5 seconds to transmit to all of the other satellites in the constellation. When

each satellite was not in transmit-mode it would default to receive-mode to listen for

the signals from all other satellites. Ultimately, it was concluded at the end of this

research that relative clock errors between satellites could be significantly mitigated

with cross-link data [18].

1.5.2.2 Space Applications Corporation Study. In 1985, the Space

Applications Corporation conducted research to determine the feasibility of designing

an autonomous navigating GPS constellation. The creation of intersatellite links for

range measurements and communication was integral to the GPS satellites being able

to navigate in an autonomous mode [10]. Cross-linking capabilities for GPS originated

in the nuclear detection (NUDET) mission designed for Block II satellites and beyond.

Nuclear detection, a secondary mission for the GPS constellation, would mandate

that satellites communicate with each other on a L3 link to disseminate detonation

information quickly around the globe to our ground or air assets. Secondary uses for

cross-links were studied by various organizations such as IBM, Aerospace Corporation,

and the University of Texas [10]. It was determined that autonomous navigation is

possible and reasonable; navigation accuracy could be maintained for at least 180

days. Only selected parameters of a reference ephemeris would need to be modified

in the navigation message to make this a reality. The study predicted that cross-link
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ranging and communication could benefit GPS by increasing accuracy of navigation

services by at least a factor of two, reducing OCS operation and maintenance cost

due to reduced satellite servicing requirements, and providing protection against OCS

outages [10].

1.5.2.3 Synchromesh: An IBM Corporation Study. Synchromesh, a

concept proposed by IBM in the 1980s, involved enhancing GPS performance by

enhancing ground prediction procedures with intersatellite information exchanges to

decrease clock and ephemeris errors [14]. Through the synchromesh study, IBM the-

orized that an increase in performance could be obtained by using a simplified pre-

diction filter coupled with cross-linking range data to estimate and correct clock and

ephemeris errors. Researchers proposed that each satellite, at a particular measure-

ment time, could determine the relationship of its own clock with respect to other

visible satellites in the constellation; each particular satellite could subsequently ad-

just its clock toward the best overall fit. Therefore each clock could be safely set to the

calculated constellation clock best fit, which would ensure relative clock consistency

within the constellation between all of the satellites. Ephemeris errors would be han-

dled in much the same way as the clock errors described above. Intersatellite ranging

measurements would be used in a least-squares estimator method to determine what

adjustments each satellite would have to make in order to reduce tangential (along-

track) orbital error. Ultimately it was found that the synchromesh method drove the

User Range Error (URE) for GPS from 2.3 m RMS to 2.1 m RMS when only clock

corrections were factored in. The baseline (nominal operations without synchromesh)

GPS model was improved by a factor of almost 50 when both clock and tangential

orbit corrections were applied using synchromesh. It is important to note that the

proposed synchromesh method would be carried out entirely in orbit with no commu-

nication needed with the OCS. In fact, the number of uploads needed to adhere to

navigation accuracy requirements during the simulation decreased from three times

per day to once per two weeks, illustrating the potential power of extensively using
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intersatellite communication for GPS [14]. Synchromesh was never practically imple-

mented because the then-current GPS satellites did not posses the necessary two-way

communication capability.

1.5.2.4 National Research Council Study. In 1995 the congressionally

funded NRC conducted a comprehensive study of the entire GPS system; the council

recommended many improvements such as using intersatellite ranging measurements

in the OCS Kalman filter. The NRC advised that the MCS could decrease the GPS

system navigation error by approximately 1.2 m (1σ) by incorporating intersatellite

ranging data in the filter and uploading that information to all GPS satellites every

hour [31].

1.5.2.5 University of the Federal Armed Forces Munich Study. Inter-

satellite link research was conducted at the University of the Federal Armed Forces

Munich in Germany in 2001. Several orbital scenarios (LEO, MEO, GEO) were

analyzed to determine the effects of using intersatellite links and auto-navigation-

equipped satellites on the ephemeris errors of simulated constellations. The conclu-

sions of the research were that to optimally apply intersatellite links, all satellites

would have to be processed in one large filter. The results also yielded answers to the

question of what would happen to the constellation if no ground links were available

and the constellation relied on an ‘autonav’ mode via intersatellite links. In the case

of GPS Block IIR satellites used in the simulation, it was found that the intersatellite

links could aid in the relative positioning of the satellites. Researchers also found that

the elimination of ground links yielded deleterious effects on the absolute positioning

of the satellites as well as for the constellation as a whole. For example, a decoupling

phenomenon was observed to occur between the constellation and the earth’s rota-

tion. Ultimately, if only satellite crosslinks were to be used, position errors (along

track, cross track, radial) would increase up to 10 m within 180 days with no updates

from the ground links [53].
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1.5.3 Spacecraft Navigation Using Pulsars. Using signals from pulsars to

aid in spacecraft navigation is not a new idea. As early as 1974, a method of using

radio signals from pulsars to navigate interplanetary spacecraft was proposed in a

NASA Technical Report [15]. It was found, however, that radio wave emissions are

not technically feasible to use in spacecraft navigation systems [44]. Studies have

shown that a large antenna on the order of 25 m in diameter would be needed to

detect the faint radio emission from pulsars [44].

In 1981, Chester and Butman first presented the concept of using x-ray pulsars

for spacecraft navigation. At the time, approximately 12 x-ray pulsars had been

cataloged as good candidates for spacecraft navigation because of their stability and

the strength of their signal. Unlike radio source pulsars, it was conjectured that signals

from x-ray source pulsars could be collected with the use of a 1000 cm2 detector to

yield three dimensional position accuracies of 150 km [9].

In 1993, Wood outlined the x-ray satellite navigation studies to be performed by

the Unconventional Stellar Aspect (USA) experiment onboard the Air Force Advanced

Global Research and Global Observation Satellite (ARGOS). The USA experiment

was the first space-based laboratory for testing the concepts of attitude and position

determination using x-ray detectors. The USA experiment, which launched in 1999,

was a collimated proportional counter x-ray telescope with 1000 cm2 of effective area.

The telescope was sensitive to photons in the energy range 1 - 15 keV and was able

to time tag all photon events with the help of a GPS receiver [40]. Satellite position,

attitude, and timekeeping research was conducted at institutions such as Stanford

University [19], the NRL [54], and the University of Maryland [43, 44] based in part

from data collected with USA until the detector’s demise in November 2000.

The researchers at the Space Systems Laboratory, University of Maryland, are

currently utilizing data from USA experiment to refine methods of determining space-

craft time, position, and velocity [43]. Four methods of position determination are

being investigated, including x-ray pulsar elevation (position angle of pulsar relative
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to nearby planets), Earth-limb occultation, delta position estimator, and absolute

position determination. Of these four methods, the latter two are the prominent

methods studied in detail thus far. The delta position estimator method uses TDOA

measurements from two or more x-ray pulsars to measure the difference in relative

position between the spacecraft and the solar system barycenter [43]. The absolute

position determination method capitalizes on the unique pulse cycles common to all

pulsars in a process similar to the GPS integer cycle ambiguity-resolution method.

By tracking the phase of several pulsars, a search grid centered about a known point

in space can be created of candidate spacecraft locations that match the measured

phase cycles [43]. The specific candidate location that best matches the measured

pulsar signal over time is selected as the spacecraft’s absolute position.

The Defense Advanced Research Project Agency (DARPA) is currently sponsor-

ing research in the field of autonomous navigation for DoD spacecraft. Conceptually,

this research is very similar to the University of Maryland research described above.

The X-ray Navigation for Autonomous Position Verification (XNAV) hopes to provide

the DoD with autonomous navigation capability independent of GPS using pulsars

as pseudo lighthouses and x-ray clocks [35]. The mission of the XNAV program is

to provide military space assets with a complimentary/backup navigational payload

that could be used in the event that potential space threats (e.g., nuclear detonation)

disabled satellite communications or impaired GPS usage. XNAV is a milestone based

three phase program. The three phases will address three key technology issues in

order to accomplish the aforementioned mission [35]:

• Detect Pulsar Sources in the energy range of 0.1 to 20 keV

1. First, candidate pulsars must be located to angular resolutions < 0.0001

arcsec.

2. Next, pulsar sources with fluxes > 10−5 photons/cm2/sec must be charac-

terized and modeled.
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3. Finally, pulsars will be observed for time durations between 103 to 106

seconds.

• Develop x-ray detectors with high signal to noise capabilities

1. Detector area < 1 m2.

2. Timing resolution from 1 to 10 nanoseconds.

3. Electronic response times of < 1 nanosecond.

• Develop a sensor package with expected time and position determination accu-

racies of less than 10 m CEP (3 σ)

1.5.4 Time Difference of Arrival Based Navigation. The TDOA measure-

ments of x-ray signals from pulsars are integral to the research of this thesis to improve

the accuracy of the GPS orbit estimation process. TDOA measurements will be used

to estimate relative ranges and clock errors between satellites. The proposed pulsar-

based TDOA navigation system is not the first TDOA-based navigation system in his-

tory. TDOA based systems range in application from search and rescue systems [55]

to GPS radio interference locators [45]. This section will discuss two other examples

of TDOA systems: Long Range Navigation (Loran) System [30], and a study done

at the Air Force Institute of Technology which proposed a television-based TDOA

system [16].

1.5.4.1 Loran. Loran is a radionavigation system conceived and con-

structed during World War II. Loran, developed at the Radiation Laboratory of the

Massachusetts Institute of Technology, was designed primarily for ship navigation.

Loran is composed of a chain of synchronized transmitters which radiate pulses of RF

energy. A receiver measures the time difference of arrival between pulses from the

master and secondary transmitter stations. Each measured time difference aides in

fixing the location of the receiver on a hyperbolic line of position. When the time

difference of at least two pairs of transmitters are recorded, the receiver can fix its

longitude and latitude on the earth because the receiver uses the intersection of two
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hyperbolic lines of position will define a 2-D position [26, 30]. A variant of the orig-

inal Loran called Loran-C is still in use today. Located in the northern hemisphere,

Loran-C provides 2-D RMS positioning accuracy of approximately 250 m [30].

1.5.4.2 Television Signal Based Navigation. In 2003, research was

conducted at (AFIT) to investigate the use of existing analog television signals for

navigation. The concept of TDOA-based range measurements was fundamental to

this proposed navigation system. The experiment involved using a single transmitter

with two receivers to estimate the range between one of the receivers and the trans-

mitter. These ranges, which factored in clock errors (also known as “pseudoranges”),

were then processed in a multilateration algorithm to determine position and clock

errors for the target receiver. It was discovered that using 8 simulated National Tele-

vision System Committee (NTSC) broadcast signals around Dayton, OH in a TDOA

algorithm, 40 m position accuracy could be attained . This study is an example of

using “signals of opportunity” (like Pulsars) for navigation [16].

1.6 Thesis Overview

Chapter 1 introduced the concept of GPS navigational accuracy and how this

research will endeavor to improve it through a TDOA navigation scheme. A summary

of research related to improving GPS navigational accuracy, TDOA navigation, and

pulsar-based spacecraft navigation was then presented.

Chapter 2 describes the background theory used in this research to develop the

GPS simulation. First, an overview of the different GPS segments will be given. Next,

an analysis of the current OCS Kalman filter will be conducted followed by an analysis

description of a batch filter – which was chosen over the Kalman filter to be used in the

simulation supporting this research. A development of the ground based pseudorange,

pulsar based x-ray signal Time of Arrival (TOA), and TDOA measurement will be

presented. The theory of clock modeling and the integral role clocks play in the GPS

system will be outlined. Next, five reference coordinate systems important for GPS
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will be studied. Finally, navigational errors fundamental to GPS, to include SISRE,

will be defined and their utility for interpreting simulation results will be explained.

Chapter 3 will discuss how the simulation was created and implemented to yield

research results. Chapter 3 will discuss how the GPS constellation was modeled using

Fortranr 90 and Matlabr Releases 13 and 14. The methodology of incorporating

pseudoranges and various pulsar TDOA range measurement scenarios into the batch

filter will also be addressed.

Chapter 4 will analyze the effect of incorporating pulsar TDOA measurements

on current operational SISRE values for GPS. The results of using different noise

values for a varying number of pulsars to calculate SISRE will also be evaluated.

Finally, Chapter 5 will make overall system conclusions and recommendations for

future research.
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II. Background

This chapter presents the background topics fundamental to this research. First

a brief overview of the GPS segments will be given. The current GPS orbit

determination methods using the Kalman filter will then be described. Subsequently,

a method of orbit determination using a batch least squares estimator will be outlined.

The concept of estimating and modeling GPS clocks and their corresponding errors

will then be developed. Next, the equations describing pseudorange measurements

and x-ray signal TOA measurements from pulsars will be introduced. The theory

of TDOA measurements will be described. The five reference coordinate systems

essential to the GPS simulation will then be outlined and explained. Finally, the

GPS navigational measurements of error will be addressed both conceptually through

figures and mathematically through the corresponding equations.

2.1 GPS Overview

GPS was developed by the Department of Defense (DoD) to offer the U.S.

military and other selected users accurate estimates of position, velocity, and time.

U.S. military requirements stipulated that position, velocity, and time errors be kept

below 10 m, 0.1 m/s, 100 ns (nanoseconds) respectively in a RMS sense [30]. The

three separate GPS segments, working in concert in order to accomplish the mission

of GPS and achieve its quantitative position, velocity, and, time goals are the OCS,

the space segment, and user segment. Figure 2.1 depicts all three GPS segments.

2.1.1 Operational Control Segment. The OCS itself can be partitioned into

three sub-elements: the Master Control Station (MCS), monitor stations, and ground

antennas. Figure 2.2 portrays the global locations of each element. The MCS, which

provides command and control for the entire GPS system, is the heart of the OCS. Lo-

cated at Schriever Air Force Base near Colorado Springs, Colorado, the specific func-

tions of the MCS include tracking satellite orbits, monitoring and sustaining satellite

health, maintaining GPS time, predicting satellite ephemerides and clock parame-

ters, updating the satellite navigation messages, commanding the small maneuvers of
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Figure 2.1: The GPS has three major segments: OCS, space,
and user [26]

satellites in order to maintain the orbits, and relocating satellites to compensate for

failures when necessary [30]. The monitor stations, which are unmanned and remotely

operated by the MCS, continuously track GPS satellite signals. The equipment at

the monitor stations essentially consists of GPS receivers with cesium atomic clocks,

meteorological instruments, and communications gear to transmit the measurements

to the MCS via ground and satellite links [30]. As mentioned in Chapter 1, the im-

plementation of the AII will introduce 6 new NIMA operated monitor stations to

the OCS network to increase the amount of tracking data available [20]. Finally,

the ground antennas, which are co-located with several monitor stations, are used for

communications with the GPS satellites via S-band radio links. The antennas are also

operated remotely by the MCS. Communications to the satellites consist of telemetry

from the satellites on the status of subsystems and functions, uplink commands, and

navigation messages generated by the MCS to be uploaded to the satellites for global

broadcast [30].
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Figure 2.2: Map of GPS monitor stations. The Accuracy Im-
provement Initiative (AII) proposes to amplify the
tracking power of the OCS by adding 6 NIMA
monitor stations

2.1.2 Space Segment. The baseline GPS constellation consists of 24 satel-

lites. The approximate orbital characteristics are listed below [30]:

• Semi-Major axis: 26,560 km

• Altitude: 20,200 km

• Eccentricity: < 0.01

• Period: ≈ 12 hours, mean sidereal time

• Six orbital planes all with inclinations of 55 degrees. The orbital planes are

labeled A through F

• The right ascensions of ascending node for each orbital plane are separated by

60 degrees relative to the equatorial plane

• Four satellites per plane with room for a spare satellite in a fifth slot in each

plane
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Figure 2.3: The GPS satellite constellation [32]

Figure 2.3 depicts the GPS constellation and the equally spaced orbital planes.

The initial prototype satellites, called Block I satellites, were launched between 1978

and 1985. The production model satellites, called Block II and IIA, were subsequently

launched to create the operational GPS constellation. Beginning in 1997, the next

generation GPS satellites, called Block IIR satellites were launched to sustain and

upgrade the capabilities of the constellation [30]. The current GPS constellation

consists of a mix of Block II, IIA, and IIR satellites [2].

2.1.2.1 Satellite Ephemeris. An ephemeris can be defined as a com-

plied set of state vectors for a given satellite predicted over time [50]. The ephemeris

values are computed when the OCS uses a Kalman filter to propagate the GPS satel-

lites’ positions and velocities to future instances in time. A constellation’s combined

ephemeris values are referred to as ephemerides. The ephemerides describe the GPS
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Figure 2.4: Diagram of Keplerian (classical orbital) elements
used to describe GPS satellite orbits [30]

orbits in terms of Keplerian orbital elements. Figure 2.4 depicts the Keplerian or-

bital elements, commonly referred to as the classical orbital elements, which form

the foundation of the GPS ephemeris parameters. There are additional terms in the

ephemeris to account for orbit perturbations using time dependent orbital element

terms and sinusoidal geoid correction terms. The ephemeris parameters broadcast

by a GPS satellite are described fully in the ICD-GPS-200c [1]. The ICD also pro-

vides instructions on how to compute satellite positions and velocities in the ECEF

coordinate frame [30].

2.1.2.2 Navigation Message. Perhaps the most important function of

the space segment is the broadcast of the navigation message to the global users of

GPS. The satellites transmit precisely timed GPS signals primarily on two L-Band

frequencies: 1.57542 GHz and 1.2276 GHz [33]. The purpose of the navigation mes-

sage is to provide users with satellite positions and satellite clock corrections for use

in the user’s navigation (position, velocity, time) solution. The message, unique to

each satellite, is modulated on a pseudo-random noise (PRN) signal. Among the in-

formation encoded in the broadcast message are the current orbital parameters of the

satellites predicted by the MCS. Table 2.1 lists the ephemeris parameters broadcast
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Table 2.1: Elements of the ephemeris in the GPS Navigation
Message [30]

Parameter Description
t0e ephemeris reference time√

a square root of semi-major axis
e eccentricity
i0 inclination angle at reference time
Ω0 longitude of the ascending node at

the beginning of the GPS week
ω argument of perigee

M0 mean anomaly at the reference time
∆n correction to the computed mean motion

i̇ rate of change of inclination with time

Ω̇ rate of change of right ascension
of ascending node with time

Cuc,Cus amplitudes of harmonic correction terms
for the computed argument of latitude

Crc,Crs amplitudes of harmonic correction terms
for the computed orbit radius

Cic,Cis amplitudes of harmonic correction terms
for the computed inclination angle

in the navigation message. Detailed information about the GPS satellite message can

be found in [33].

2.1.3 User Segment. The early years of GPS saw a user community primar-

ily populated by military users. Investments made in GPS receiver technology by the

government and private technology companies, however, has spawned a recent explo-

sion in civilian GPS usage. The expansion of civilian use can primarily be attributed

to the creation of more portable and affordable receivers. A typical GPS receiver is

composed of [33]:

• Omnidirectional antenna - to receive the encoded navigation message broadcast

from GPS satellites on the L1 and L2 bands

• Filter/Amplifier - to filter out interfering signals and amplify the GPS signal
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• Delay Lock Loop Receiver/Demodulator - to provide estimates of the pseudor-

ange, carrier phase, and navigation data for each satellite

• Navigation Data Processor - to calculate the position of each satellite based on

the navigation data

• Kalman Filter - to estimate the user position and velocity state vector

• Reference Oscillator - to provide time and frequency reference for the receiver

The typical GPS receiver is also able to make corrections for ionospheric delays and

electromagnetic disturbances by simultaneously receiving GPS signals on both the L1

and L2 bands. A detailed description of a typical GPS receiver architecture can be

found in [33].

2.2 Current GPS Kalman Filtering Techniques

A partitioned Kalman filter is at the heart of the GPS orbit estimation process

conducted by the MCS at Shriever AFB, CO [31]. The Kalman filter is ideal for this

task for many reasons. The Kalman filter has proven itself to be useful for situations

in which data is available in a continuous stream. In fact, the Kalman filter is also

known as a sequential filter because it continuously improves the estimate of the state

vectors by sequentially incorporating new data measurements into the estimate as

they become available [52]. In other words, the Kalman filter utilizes data from the

past up to the present to achieve a current state estimate [34]. Additionally, Kalman

filters are able to compensate in situations where forces in a dynamical system are

not completely known or have been incompletely modeled [50]. Kalman filters are

ideal for handling stochastic systems. The Kalman filter begins with an estimate of

the state (e.g., position and velocity) X̂t and the state’s estimated covariance P̂t at

time t. The covariance matrix is a statistical measure of how good our estimate, X̂t,

is. Next, an a priori solution of the state X̃t+1 and covariance P̃t+1 is generated for

the next epoch. These new epoch predictions are computed with no new real data –
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they are simply calculated predictions. This step is sometimes referred to as the time

propagation. The predicted state is found by:

X̃t+1 = Φt+1,tX̂t (2.1)

where

X̃t+1 is the current state vector

Φt+1,t is the state transition matrix. The state transition matrix is used to prop-

agate the state estimate and its covariance through time

X̃t+1 is the state vector propagated to the next epoch time prior to incorporat-

ing new measurements

The covariance is correspondingly propagated by:

P̃t+1 = Φt+1,t(P̂t)Φ
T
t+1,t + Qt (2.2)

where

P̃t+1 is the covariance propagated to the next epoch time using no new real data

Qt is the second moment of the process noise. Qt is a covariance matrix asso-

ciated with the process noise error that occurs when the covariance matrix is Pt is

propagated through time [50]. Essentially Qt accounts for the uncertainty in the Φ

matrix’s ability to model the dynamics inherent in the GPS prediction problem [50]

X̃t+1 is the state vector propagated to the next epoch time with no new real data

When new data1 from the monitor stations is sequentially added to the estima-

tor, new estimates of the state vector X̂t and covariance matrix P̂t are generated as

a result. The estimated state and covariance can be thought of as corrected versions

of the predicted values, X̃t+1 and P̃t+1 respectively. This step is sometimes referred

to as the measurement update [34]. The state is updated by:

1In this research, data used in a filter will also be referred to as a measurement and/or observation
(e.g. TDOA measurement, pseudorange observation).
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X̂t+1 = X̃t+1 + Kt+1(~zt+1 −Ht+1X̃t+1) (2.3)

where

(~zt+1 −Ht+1X̃t+1) represents the residual vector (~r)

~z represents the new real data vector

K is the Kalman gain matrix

The K matrix weights the predicted residual vector and can be computed from:

Kt+1 = P̃t+1H
T
t+1(Ht+1P̃t+1H

T
t+1 + Rt)

−1 (2.4)

where

R is the measurement noise covariance matrix

H is the observation partial derivative matrix. H relates the linearized obser-

vations (z ) to the estimated states in the X matrices

The updated covariance matrix is calculated by the equation:

P̂t+1 = P̃t+1 −Kt+1Ht+1P̃t+1 (2.5)

The MCS at 2SOPS implements an extended2 Kalman filter for its deterministic

and stochastic modeling advantages. In the deterministic domain, the task of continu-

ously predicting satellite states for hours, days, or weeks into the future is essential to

GPS user navigational operations [52]. The Kalman filter allows the MCS to exploit a

proper dynamics model through the state transition matrix Φ to continuously predict

satellite states and covariances.

Clock errors, radial / along-track / cross-track orbit perturbations, and solar ra-

diation perturbations characterize the stochastic aspect of accurately predicting GPS

states. These quantities are stochastic because of their random nature. Statistical

2See [50] for the definition of an extended Kalman filter and its applications
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losses of information caused by process noise uncertainty and the passage of time can

be accounted for by the Kalman filter through a method called “tuning.” The tuning

strategy involves experimentally changing the Qt term in the propagation covariance

Equation (2.2). The tuning process has been applied several times (EEE and Clock

Improvement Initiative) by the MCS as was mentioned in Chapter 1.

Finally, the Kalman filter serves the MCS well because of its computationally

amenable nature. The Kalman filter characteristically processes data sequentially

in relatively small time steps, making it easier for computers to make calculations;

computational resources are conserved because they are not forced to deal with all the

data for a given interval at once. Additionally, because of technological limitations

present during the design phase, the MCS Kalman filter was partitioned to process

subsets of GPS satellites and states separately. The partitioned computations are

subsequently combined just before the estimates of the state vectors at epoch are

found. With the implementation of the AII outlined in Section 1.5.1.3, the MCS

Kalman filter will be recombined into a single partition. It has been conjectured that

the single partitioned Kalman filter will result in satellite ephemeris and clock errors

that are 15% below its partitioned predecessor [31].

2.3 Nonlinear Least Squares (Batch) Filter

A Kalman filter may not be necessary in conditions where the states are not

continuously being estimated. If all measurements for a given time interval are avail-

able before the estimation process begins, then the states can be processed as one

group in another type of filter - the batch filter [52]. The batch filter differs from the

Kalman filter in several significant ways. Unlike a Kalman filter which continuously

updates the state (and thus epoch time) after each successive observation time, the

batch filter updates the state estimate after all measurements are available. Also, the

Kalman filter carries all the information concerning past measurements by using past

estimates as inputs into the current state and covariance estimates. The objective

of a batch filter is to find a trajectory among all possible trajectories that will mini-
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mize the mean square difference between the actual observations and the theoretical

observations derived from the calculated trajectory [50]. The process of minimizing

the sum of the squares of the observation residuals (actual - theoretical) is called the

method of least squares.

Obtaining an estimate of the true trajectory by computing linear corrections to

a reference (nominal) trajectory is necessary because of the nonlinear nature of the

orbit determination problem. The process of solving for a satellite’s states, which are

embedded in an unobtainable true trajectory, involves using a nonlinear least squares

technique to turn the reference trajectory into an estimate that is suitably close to the

true trajectory [50]. The nonlinear least squares technique, used to iteratively estimate

corrections to the initial reference trajectory [50], starts with an initial state vector

X. The state vector is integrated to the first observation time using the equations:

Ẋ(t) = ~F (X, t) (2.6)

Φ̇(ti, t0) = A(t)Φ(ti, t0) (2.7)

where

X is the initial state vector
~F (X, t) represents the nonlinear equations of motion

Ẋ(t) is the time derivative of the initial state vector

Φ(ti, t0) is the state transition matrix

Φ̇(ti, t0) is the time derivative of the state transition matrix

A(t) is the matrix of partial derivatives of the equations of motion with respect

to the elements of the state vector

Equation (2.7) represents the linearization of Equation (2.6). Equation (2.6) is

integrated to the first observation time and can now be called the reference trajectory

xref . At each observation time the residual vector is calculated from the equation:

~ri = zi −G(xref (ti), ti) (2.8)
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where

~ri is the measurement residual vector

zi is the observation vector

G(xref (ti), ti) is the calculated value of the reference trajectory. The G function

describes the measured data in terms of the states of the reference trajectory xref [52]

i is the index, from 1 to N, of the number of observations in the batch corre-

sponding to each row of ~r

Next, the observation matrix H is calculated

Hi =
∂G(xref (ti), ti)

∂X
(2.9)

where

H is the observation matrix which contains the partials of the observations with

respect to the state vector components

i is the index, from 1 to N, of the number of observations in the batch corre-

sponding to each row of the H matrix

The observations are mapped to the epoch state by multiplying each row (Hi

= observation) of the H matrix by the corresponding Φ(ti,t0) matrix

Ti = HiΦ(ti, t0) (2.10)

The successive observations (Ti) are subsequently added as rows to the final T

matrix. When all of the data has been processed into the T matrix, the covariance

Pδx and the correction to the reference trajectory state vector is computed.

δx(t0) = (T T WT )−1(T T W~r) (2.11)

δx(t0) = Pδx(T
T W~r) (2.12)

where

W is the measurement weighting matrix which weights the different types of
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observations using the inverses of the squared standard deviations [50]

Pδx is the state vector covariance matrix equal to (T T WTi)
−1

δx(t0) is the correction to the precomputed reference trajectory

Finally Equation (2.11) is used to turn the reference trajectory into an estimate

of the true trajectory

x̄(t0) = xref (t0) + δx(t0) (2.13)

where x̄(t0) is the estimate of the state vector.

As noted earlier, nonlinear least squares is an iterative technique. Typically,

before x̄(t0) can be arrived at, the sum of xref (t0)+δx(t0) is equal to xref+1(t0) and the

entire process begins again with xref+1(t0) being declared as the new xref (t0) [52]. The

convergence of Equation (2.13) is determined by analyzing the RMS of the residuals

(often referred to as the ‘cost function’) calculated in Equation (2.8). The goal of the

nonlinear least squares technique is to minimize the sum of the residuals squared and

therefore the least squares algorithm must be iterated through until the cost function

stops changing within a specified tolerance [50].

2.4 Pseudorange Measurements

2.4.1 Pseudorange Calculation. The primary observations used in this simu-

lation to determine the position of GPS satellites will be pseudoranges. Conceptually,

we follow the description in [30] and [50] to describe the generation of an operational

GPS pseudorange measurement. As was mentioned in Section 2.1, each satellite

generates a navigation message on two L-band frequencies, L1 (1575.42 MHz) and

L2 (1227.60 MHz). Two PRN-codes, the Coarse-Acquisition (C/A) code and the

Precision (P(Y)) code, are modulated onto the L1 and the L1 and L2 bands respec-

tively [50]. The PRN-codes are unique to each satellite. To determine a PRN signal

transit time, the user/receiver first compares an internal copy of the PRN signal with

the one received from the GPS satellite [18]. A user can determine the pseudorange
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between the receiver and the GPS satellite by calculating the time shift required to

align the internal PRN signal with the observed signal from the satellite; a pseudo-

range is obtained by multiplying this phase time shift by the speed of light. The

measurement, called a “pseudo-range”, is derived from a time difference between the

satellite and the receiver and thus it includes the effects of clock errors [18]. Therefore,

pseudoranges can be described as the measure of the PRN signal travel time between

the GPS satellite at some transmit time, Ttrans, and the receiver at some receive time,

Trec [50]. The transit time is scaled by the speed of light and represented as a distance.

The pseudorange equation can then be represented as:

ρ̂ = c(Ttrans − Trec) (2.14)

where

c is the speed of light

Ttrans is the perceived time of transmission of the PRN-code from the GPS

satellite

Trec is the perceived time of reception of the PRN-code by the receiver

The time difference, derived from the transmitter and receiver clock biases,

make it impossible to determine the true range between the two points with just one

measurement [50]. Accounting for the clock biases, the transmit and receive times

are defined as

Ttrans = ttrans + δttrans (2.15)

Trec = trec + δtrec (2.16)

where

ttrans is the true transmission time

trec is the true reception time

δttrans is the GPS satellite clock error
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δtrec is the receiver clock error

The clock error terms δttrans and δtrec will be explained in greater detail in

Chapter 3. The expanded pseudorange equation ρ̂ can then be expressed as:

ρ̂ = ρ + c(δttrans − δtrec) (2.17)

ρ =
√

(xtrans − xrec)2 + (ytrans − yrec)2 + (ztrans − zrec)2 (2.18)

where

ρ represents the geometric distance between the satellite and the receiver. It is

merely the product of the speed of light, c, and the difference in the PRN-code’s true

time of transmission and true time of reception

xtrans, ytrans, ztrans is the position of the transmitter

xrec, yrec, zrec is the position of the receiver

Equation (2.17) physically makes sense, because if the satellite and receiver were

synchronized (i.e., δttrans − δtrec = 0), the pseudorange equation would reduce to the

geometric range between transmitter and receiver.

2.4.2 Estimating Positions. Equation (2.17), when other miscellaneous

measurement noises are added, can be used by the GPS system to find the position of

the user or the position of the GPS satellites. When determining the position of the

user, xtrans, ytrans, ztrans, and δttrans are assumed to be known and Equation (2.17)

will be used to solve for xrec, yrec, zrec, and δtrec. Mathematically, a minimum of

four satellites are needed to solve for the four unknowns. Figure 2.5 depicts this

pseudorange solution situation. In practice a receiver can track anywhere from 6 –

12 satellites simultaneously, which means that the nonlinear least-squares methods

used to solve for the receiver position must be implemented in an overdetermined

sense [30].

2-15



Figure 2.5: Pseudorange measurements are needed from at
least four satellites to estimate the user position
(x, y, z ) and the receiver clock bias (δtrec). In this
figure b = c (δttrans − δtrec) [30].

Conversely, to determine the position and clock error (xtrans, ytrans, ztrans,

δttrans) of a GPS satellite, the pseudorange solution must be inverted. Now xrec, yrec,

zrec, and δtrec represent the position of a single GPS monitor tracking station. A min-

imum of four monitor stations containing GPS receivers are needed for the solution;

in reality, hundreds of extra pseudoranges are obtained and used in an overdetermined

nonlinear least-squares algorithm to determine satellite ephemeris values [26].

Operationally, when the components of Equation (2.17) are solved for, nonlinear

techniques are normally used because of the nonlinear nature of the pseudorange equa-

tion. In order to use these techniques, the pseudorange equation must be linearized

using a first order Taylor’s series expansion. The nonlinear form of Equation (2.17)

will be developed in Chapter 3. Additionally, in a situation where there are more

equations than unknowns, it is advantageous to utilize all of the equations to solve for

the unknowns in a least squares method. Sections 2.2 and 2.3, which outline Kalman

and Batch filter techniques, are two prominent methods used to estimate unknowns

in an overdetermined situation.
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2.5 Pulsar Signal Time of Arrival Measurements

Pulsar TDOAs will be used to measure relative distances between GPS satellites.

To obtain a TDOA, each satellite must be able to accurately measure and time-tag

pulses from a corresponding pulsar. In the real-world implementation, a GPS satellite

might have a pulsar template profile stored for each pulsar (much like GPS receivers

have a PRN-code template for each GPS satellite – see Section 2.4). The incoming

pulses for a particular pulsar would be cross correlated with its corresponding stored

profile allowing a certain point on the observed pulse to then be time-tagged as the

TOA. This same procedure would be conducted on another GPS satellite observing

the same pulsar. The two satellites would difference their time-stamps for the same

point on the pulse to determine the TDOA. This section seeks to develop the concepts

and equations necessary to justify TOA measurement accuracies and noise values that

will be used in the GPS TDOA simulation.

2.5.1 Pulsar Timing Profiles. To effectively utilize the clock-like properties

of a pulsar in a TOA measurement, a standard pulse template – conventionally called

a pulse profile, must first be generated. A pulse profile is a representation of the

integrated signal of multiple detected pulses from the pulsar. Every pulsar has a

unique signal – a fingerprint, that distinguishes it from all other pulsars at that

particular observing frequency with respect to its amplitude, duration, number of

peaks, and stability [28] . A pulse profile is made by observing a pulsar over periods

of time that range from hundreds of seconds to days. These time periods allow the

detector to collect groups of individual pulses. While individual pulses can fluctuate

in both intensity and shape, a profile integrated over several hundred or thousand

pulses produces a standard profile shape that is reproducible for a given pulsar at a

given frequency [47]. Figure 2.6 shows several pulses which are integrated to form the

pulse profile [47]. Multiple pulse periods are averaged (typically called “folding”) to
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Figure 2.6: A sequence of pulses from PSR B0950 + 08 with
the integrated profile obtained by adding together
the sequence of individual pulses. Diagram illus-
trates pulse-to-pulse variability in shape and in-
tensity. [28]

create a very high signal-to-noise ratio profile [28]. Figure 2.7 shows a profile of PSR

J1811-19253.

2.5.2 Measuring TOAs. A standard pulsar template recorded for each

pulsar allows TOA measurements to be collected from each pulsar. Conceptually, a

pulse TOA can be defined as the time at which a predetermined reference point of a

pulse profile has arrived at the detector [22]. In order to measure a TOA, first a clock

must record the instant that the first x-ray photons are received by the detector [46].

Typically, the observation’s start time is projected forward to the midpoint of the

3The name of a pulsar is derived from its celestial coordinates. The number in front of the ‘+’
or ‘-’ is the right ascension in hours and minutes, and the number behind it is the declination in
degrees. The letter ‘B’ or ‘J’ describes the coordinate system B1950.0 or J2000.0 respectively. For
example, PSR J1811-1925 mentioned above is referenced in the J2000.0 coordinate system. The
pulsar is located at a right ascension of 18h 11m and a declination of -19◦25’ [28]
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Figure 2.7: Standard profile of PSR 1855 + 09 used to obtain
pulse times of arrival. The phase defined as the
TOA is marked with an arrow. [49]

integration time (by adding an integer number of pulse periods) to account for poorly

known pulse periods [47] and intrinsic pulsar timing irregularities. The time to a

“fiducial point”(usually the peak) in the pulse is then calculated. Finally, the time

offset between the observed profile and the standard pulsar profile is calculated. The

time offset can be calculated by determining the phase shift between the two profiles

in the Fourier domain. The TOA measurement can then be calculated as

TOA = tstart + ∆tmidpoint + ∆tfiducialpoint + ∆toffset (2.19)

where

tstart is the beginning of the x-ray photon collection/integration time

∆tmidpoint is the time differential between the integration start time and the

projected integration midpoint

∆tfiducialpoint is the time differential between the designated beginning of a pe-

riod and a reference (fiducial) point in the period. Often the fiducial point is a peak

in the pulsar pulse

∆toffset is the time difference between fiducial points in the observation and
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standard profiles

The TOAs calculated at a pair of satellites from a given pulsar pulse will yield

a TDOA measurement for use in the orbit determination filter. The nature of how

TDOAs are calculated will be discussed in a following section.

2.5.3 Millisecond Pulsars. To collect TOAs for subsequent use in calculat-

ing TDOAs for the GPS constellation, it is desirable to use the most stable pulsars

available. One such group of pulsars are called millisecond pulsars (MSPs). MSPs

are classified as the group of pulsars with spin periods between 1.5 ms and 30 ms and

spin rate slowdowns of less than 10−19 s/s [27]. MSPs, also called “recycled” pulsars,

are extremely old pulsars (1 - 14 Gyr4) whose spin rates have been rejuvenated from

the accretion of mass and angular momentum from a companion star [3]. MSPs are a

special breed of pulsars that are especially desirable in pulsar-based spacecraft navi-

gation (see [44]), because these pulsars display extraordinarily stable and predictable

rotation rates. Figure 2.8 illustrates the comparative stabilities of MSP as compared

to other time keeping devices. Short predictable pulses can mean unusually high mea-

surement precision [49] and therefore can yield highly accurate TOA measurements.

This simulation will rely on MSPs to create TDOA measurements because of their

aforementioned desirable attributes.

2.5.4 Accuracy of TOA measurements. The fundamental goal of pulsar

pulse timing is to measure the location of the pulse peak as accurately as possible. The

pulse peak measurement is constructed through the act of detecting photon events in

a detector. The phenomena of measuring photons arriving from a x-ray pulsar source

to a x-ray detector represents a Poisson statistical process because photon events

are assumed to occur independently and over a constant area [38]. Therefore, the

accuracy of a TOA can be approximated by the uncertainty equation [38]:

41 Galactic Year = 109 years
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Figure 2.8: Allan variance plot depicting the fractional sta-
bilities of PSR 1937 + 21 as compared to atomic
clocks. Fig. ref. [28]

σTOA ≈ HWHM∗

S/
√

S + B
(2.20)

HWHM∗ =
√

HWHM2 + σ2
γ (2.21)

where

HWHM is the measured half-width at half maximum of the pulsar pulse shape

HWHM∗ is the half-width at half maximum of the pulsar pulse shape summed

in quadrature with the photon timing error

S is the number of photons detected from the pulsed signal of the pulsar during

the observation

B is the total number of all other photon events in the observation including

any unpulsed emission from the source, the diffuse x-ray background, and particle-

induced background counts in the detector

σγ is the timing error of any individual photon. The ability of a detector to

distinguish one pulse from another in units of time
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Astronomers use the half-width half-maximum (HWHM ) value to measure the

wavelength dependent emission properties of pulsars near the emission maximum

for each pulse [17]. Operationally, the HWHM is measured by simply taking the

difference in phase between the peak maximum and the points where the flux drops

to one-half of the maximum value [17]. Each pulsar has been observed to have its own

unique HWHM measurement. It is important to note that in order to achieve a more

accurate TOA measurement, σTOA must be made as small as possible. Thus, the

numerator of Equation (2.20) must be driven down with respect to the denominator.

Therefore, a small HWHM ∗ is preferable to a large HWHM ∗. A more comprehensive

description of HWHM and its applications can be found in [17].

The denominator of Equation (2.20) represents the signal-to-noise ratio (SNR)

of the observation [38].

SNR = (S/
√

S + B) (2.22)

S = AeffFlux∆t (2.23)

B = AeffFluxbackground∆t (2.24)

where

Aeff is the effective area of the detector in cm2

Flux is the energy (or number of photons) per second passing through a unit

area at the detector in photons/cm2/sec

Fluxbackground is the energy (or number of photons) per second passing through

a unit area at the detector from every source other than the targeted pulsar in units

of photons/cm2/sec

∆t is the duration of the observation in seconds

Equations (2.20), (2.22), and (2.23) illustrate that an accurate TOA is depen-

dent on an observation that maximizes the SNR by using a large area detector to

observe as many photons in a short time period [38]. A more comprehensive descrip-

tion of pulsar timing errors and noise can be found in [13,28,46,49].
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2.6 TDOA Measurements

At its core, a TDOA measurement consists of one transmitter and two receivers.

The sender transmits a signal which is received at the first receiver as TOA1 (Time of

Arrival 1) at time t1. The same signal is subsequently received at the second receiver

at time t2 as TOA2. Correlation analysis of the two TOAs yields a time delay τ1−2

which corresponds to a distance between the two receivers when scaled by the speed

of light in the direction of the pulsar. A TDOA measurement can be defined as the

time differential in TOAs between two receivers scaled by a speed to yield a distance

between them in the direction of the transmitter.

The true TDOA measurement can be represented by the equation:

TDOAi−j = c(ti − tj) (2.25)

where

ti is the true time of arrival of the signal from the transmitter to receiveri

tj is the true time of arrival of the signal from the transmitter to receiverj

c is the speed of light

Equation (2.25) cannot be used in a real world model however, because it erro-

neously assumes that receivers i and j were able to perfectly time-tag the TOA signals

from the transmitter. A perfect timing assumption would mean either no intrinsic

receiver clock errors or absolute receiver synchronization which would act to mask the

clock errors between them.

To develop the operational (real world) TDOA equation, the TOAs for a pair

unsynchronized (different clock biases) receivers must first be defined as:

TOAreceiveri = ti + δti (2.26)

TOAreceiverj = tj + δtj (2.27)
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where

δti is the time according to receiver i. It represents the clock bias intrinsic to

receiver i

δtj is the time according to receiver j. It represents the clock bias intrinsic to

receiver j

The operational TDOA measurement can be generated by the equations:

TDOAi−j = c(TOAreceiveri
− TOAreceiverj

) (2.28)

TOAi − TOAj = ti − tj + δti − δtj (2.29)

TDOAi−j = Ri−j + c(δti − δtj) (2.30)

where R is a distance between receiver i and j in the direction of the transmitter.

Equation (2.30) yields the relative distance between receiver i and j in the direc-

tion of the transmitter. Graphically we can depict equation (2.30) using Figure 2.9.

Line r1 represents the signal traveling from the satellite and arriving at receiver 1

at time TOA1. Line r2 represents the signal traveling from the satellite and arriv-

ing at receiver 2 at time TOA2. The known distance between receivers 1 and 2 is

represented as d. A unit vector in the direction of the transmitter is represented by

n̂. The segment r2 - r1 pictorially represents Equation (2.25), the true TDOA, when

multiplied by the speed of light. Geometrically, the true TDOA of Equation (2.25)

can be calculated by calculating the dot product of segment d (in vector form) with

the directional unit vector n̂. The dot product of ~d and n̂ is the projection of the

relative position vector ~d in the direction of the transmitter. Factoring in the clock

errors of each receiver yields the desired TDOA measurement represented in Equa-

tion (2.30). The simulation specific TDOA measurement, based on Figure 2.9 and

Equation (2.30), will be developed in Chapter 3.
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Figure 2.9: Diagram graphically depicts a time-difference-of-
arrival (TDOA) measurement

2.6.1 Phase Integer Ambiguity Resolution. One characteristic of MSPs that

is both beneficial and detrimental to this research is the inherent periodic stability

of MSP signals. Pulsar stability aids in the generation of pulse profiles as well as

TOA measurements through periodic-signal correlation. A regularly periodic signal

however, also introduces phase ambiguity to the TDOA correlation process. The

question arises: with a MSP periodic signal, how would each satellite know which

peak was being time-tagged? In fact, the satellites, in receiving their respective TOA

measurements, would only be able to discern fractional phase differences of the pulsar

signal. In reality, there could be an integer number of signal peak differences, plus

the fractional difference, between the peak that satellite 1 measured and the peak

that satellite 2 measured. It is difficult for one satellite to know which peak was

measured in relation to the other satellite because each pulse period looks identical

to the one before and after it. Figure 2.10 depicts the phase ambiguity phenomena.

The ambiguity is an integer number N which represents the unknown number of

cycles between the true TOA point on the pulse for satellite 1 and that for satellite
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Figure 2.10: Diagram of phase integer ambiguity

2. Resolving the phase ambiguity issue is frequently called phase integer ambiguity

resolution. It is essential that ambiguity resolution be performed on the TOAs before

a true TDOA measurement between satellites 1 and 2 can be determined. There

are several ways to solve the problem of phase integer ambiguity which will not be

covered here. However, the following comments are important to note about phase

ambiguity: the ambiguity is always an integer number, the ambiguity will be different

for the phase observations for different pulsars, the ambiguity will be different for each

pulsar-satellite pair, and the ambiguity is constant for each pulsar-satellite pair as

long as there is a continuous tracking period [41]. For a detailed discussion of a phase

integer ambiguity and a list of possible solutions to this problem see [30]. For this

research and simulation, it will be assumed that phase integer ambiguity resolution

has been performed and the resulting TOAs represent a correlated measure of the

same point on a pulsar pulse for both satellites 1 and 2.
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2.7 Reference Coordinate Systems

Five different coordinate systems will be used in this research: Earth Centered

Inertial (ECI) , Earth Centered Earth Fixed (ECEF), Geodetic (Latitude, Longitude,

Altitude), Right Ascension/Declination(RA-Dec), and Radial / Along-Track / Cross-

Track (RSW). Each coordinate system has its advantages in describing the positions

of Earth-stationary objects or the motions of the GPS satellites. In this section each

coordinate system will be defined and described; mathematical derivations for these

coordinate systems can be found in [50] or [42]. Chapter 3 will show how these

coordinate systems can used to determine satellite state vectors, and depict orbital

ephemeris errors.

2.7.1 ECI Reference Frame. The Earth Centered Inertial coordinate system,

also known as ECI, is typically used when describing the motion of a satellite orbiting

the Earth. This coordinate system is defined with the origin at the center of the

Earth, the X̂ axis pointing toward the vernal equinox in the equatorial plane, and

the Ẑ axis extending through the North Pole along the axis of rotation. The Ŷ axis

completes a right handed coordinate system 90◦ from the X̂ axis in the equatorial

plane. Figure 2.11 depicts this coordinate system sometimes referred to as the “IJK”

frame. In reality, this coordinate system actually moves because the Earth’s axis of

rotation precesses with a period of 26,000 years and nutates with a period of 18.6

years. This phenomenon has the effect of slightly altering the coordinates of the

reference celestial objects for coordinate system. For the purposes of this simulation,

it will be assumed that these effects are negligible to the results we are trying to

obtain.

2.7.2 ECEF Reference Frame. The ECEF frame is useful for Earth-based

satellite tracking operations and therefore will be used extensively in this simulation.

The main difference between ECEF and ECI is the fact that the ECEF frame is

always aligned with a particular meridian (usually the Prime Meridian at Greenwich)

and thus rotates with the Earth. The X̂ axis of this frame points toward a chosen
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Figure 2.11: The coordinates of ECI are commonly described

as
−−→
IJK or

−−−→
XY Z

[50]

meridian in the plane of the equator. The Ŷ axis points 90◦ from the X̂ axis in the

direction of Earth rotation. The Ẑ axis is aligned with the Ẑ axis of the ECI frame.

Figure 2.12 illustrates this coordinate system. ECEF is not considered an inertial

frame because it rotates in synch with the rotation of the Earth.

2.7.3 Geodetic Reference Frame. The geodetic coordinate frame can be

used to describe the position of GPS monitor stations on the surface of the Earth.

Longitude (λ) is an east-west angular displacement measured positive to the east from

Figure 2.12: The ECEF coordinate system
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Figure 2.13: Geodetic coordinate frame [30]

the prime meridian (so traveling west from the prime meridian will yield a negative

longitude angle). Latitude (φ) is the north-south angular displacement, referenced

from the Earth’s equator, measured positive traveling north from the equator into

the Northern Hemisphere. Altitude (h), also known as geodetic height, is measured

as positive from the local horizon up to the target. Figure 2.13 shows the geodetic

frame, which is based on the surface of the Earth, and is defined by first modeling the

Earth as an oblate ellipsoid. The geoid, a model based on the equipotential surface of

the Earth, is fit to the oblate ellipsoid. The geoid is used for mapping, charting, and

more importantly, GPS navigation. GPS uses a WGS-84 based ellipsoid to describe

user positions in the geodetic frame [30].

2.7.4 Right Ascension/Declination Frame. The right ascension, α, and

declination, δ, frame is typically used by astronomers to catalog star positions. This

frame is convenient for astronomical measurements because the vernal equinox, which

is a fixed point in space, is used as a reference point [50]. The right ascension is

measured positive to the east (0◦ to 360◦) in the Earth’s equator plane from the

vernal equinox direction. The declination is positively measured northward from the
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Figure 2.14: The Right Ascension/Declination coordinate
system is typically used by astronomers to cata-
log stars. [42]

equator (0◦ to 90◦). All declination measurements south of the equator are considered

negative (0◦ to -90◦) [50]. Figure 2.14 illustrates this coordinate system.

2.7.5 RSW Reference Frame. The RSW coordinate system will be used in

this research to compute SISRE values for the GPS satellites. Figure 2.15 illustrates

this satellite-based orthogonal coordinate system that, unlike the aforementioned ref-

erence systems, moves with the satellite as it orbits. The R̂ axis is aligned with the

radius vector that points from the center of the Earth towards the satellite as it moves.

The Ŝ axis points in the direction of the velocity vector and is perpendicular to the

radius vector. It is important to note that the ~S vector only aligns with the satellite

velocity vector when the orbit is circular. The Ŵ axis points 90◦ in the direction of

the local vertical but usually is not aligned with the ~Z vector of the ECI frame unless

the orbit is equatorial.
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Figure 2.15: The Radial, Along-track, Cross-track (RSW) co-
ordinate system. [50]

2.8 GPS Navigational Errors

GPS receivers use satellite position and clock error data together with the pseu-

dorange measurements to determine accurate user position, velocity, and time esti-

mates [20]. The total error budget for a GPS real-time PPS user (referred to as the

User Navigation Error (UNE)) can be separated into SISRE and User-Equipment

Range Error (UERE) components. UERE includes receiver noise, tropospheric re-

fraction, ionospheric delays, multipath errors, and other errors endemic to the user’s

local area. SISRE comprises of errors solely associated with the GPS satellites [29].

As introduced in Chapter 1, SISRE is a measure of the fidelity of the navigation mes-

sages broadcast by the GPS satellites. Therefore, a PPS user’s total navigation error

can be represented as

UNE(1σ) = GDOP
√

SISRE2 + UERE2 (2.31)

where

GDOP is the geometric dilution of precision

SISRE is the composite of all satellite-based errors
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Figure 2.16: These two diagrams illustrate instances of good
and bad GDOP geometries

UERE is the composite of all user-equipment based errors

GDOP expresses the geometry of the GPS satellites relative to the receiver.

Figure 2.16 illustrates instances of a good and bad GDOP. Pseudorange observation

angles, which are a measure of the angles between a receiver and a group of satellites,

yield increased positioning accuracies when the observation angles are farther apart

[50]. GDOP is very important for GPS receiver performance theory. Indeed all

receivers use a GDOP-based algorithm to select the best set of satellites available to

track from among the 6 – 12 satellites in view [30, 33]. Equation (2.31) tells us that

GDOP is very significant in the computation of the user’s navigational accuracy. In

fact, geometric error is categorized as the second most significant non-environmental

error source for GPS [37]. A detailed derivation of GDOP can be found in [33].

SISRE can also be decomposed into a weighted RMS of many individual errors

[37].
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SISRE =

√
(R− CLK)2 +

1

49
(A2 + C2) (2.32)

where

R is the radial direction ephemeris error

A is the along-track direction ephemeris error

C is the cross-track direction ephemeris error

CLK is the satellite clock phase error with respect to GPS time

The first term in Equation (2.32) tells us that the radial error (R) and clock

error (CLK ) of SISRE are correlated – meaning that if the errors were equal, they

would cancel each other and we’d be left with only the along-track and cross-track

terms. Physically, this assertion makes sense because both R and CLK represent

measurements to the GPS satellite projected in the direction of the range vector (the

vector between the satellite and the receiver). R is a calculated range and CLK

is related to the measurement of the range with respect to time - a pseudorange.

The error in a pseudorange measurement is the projection of the satellite ephemeris

error in the satellite-receiver line of sight [30]. The line of sight error is primarily

dependent on the R component of the ephemeris error and to a lesser degree, the A

and C components [30]. Equation (2.32) corroborates this SISRE component weight

assignment because A and C are given a weight equal to 1/7 the weight of the (R−
CLK) term. Figure 2.17 illustrates how the radial error is more detrimental to the

line of sight range measurement than the cross-track or along-track errors [37]. For

example, a 1 m radial error would directly translate into a 1 m range error, whereas

because of geometry, a 1 m along-track or cross-track error would translate into a 1
7

(square root of 1
49

) range error.

Decreasing UERE is the job of the user community through the improvements

in GPS receiver technology. SISRE improvement is the responsibility of the OCS and

the primary goal of this thesis. Currently, SISRE measures anywhere between 2 – 4
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m for the PPS user [29]; this research seeks to decrease this value using TDOAs to

expand the measurement geometry of the GPS constellation.

Figure 2.17: Radial range measurements have a greater effect
on the overall range error than their orthogonal
axes counterparts (along-track and cross-track).

2.9 Summary

This chapter presented the mathematical theory and concepts necessary to de-

velop a GPS OCS simulation and pulsar-based TDOA scheme. An overview of the 3

segments of GPS was given. Next, current GPS Kalman filtering techniques were dis-

cussed. An introduction of the nonlinear least squares (batch) filter was given. Next,

pseudoranges, x-ray signal TOAs, and TDOA measurements were presented. Finally,

relevant coordinate frames were discussed. Chapter 3 will present the simulation’s

algorithms used to model GPS and pulsars that emit x-ray radiation.
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III. GPS and Pulsar Algorithm Development

This chapter describes the methodologies, algorithms, and assumptions used to

accomplish the research objectives outlined in Chapter 1. Section 3.1 gives an

overview of how the simulation was set up. Section 3.2 explains the simulation’s ref-

erence truth model. Section 3.3 discusses how pseudorange observations using ground

stations were simulated. Section 3.4 describes how pulsars were used to develop an

experimental TDOA measurement scheme between GPS satellites. Section 3.5 dis-

cusses the development of a batch filter algorithm to accommodate both pseudorange

and TDOA observations. Finally Section 3.6 briefly introduces the analysis that will

be presented in Chapter 4.

3.1 Introduction

3.1.1 Simulation Overview. The objectives of this study, as stated in Chap-

ter 1, can be summarized in five key points:

• Quantify impact of using pulsars to decrease the GPS SISRE to levels lower

than pseudorange-only based SISREs.

• Conduct a tradeoff study to determine how many pulsars are needed to make

pulsar measurements a significant contributor to SISRE decrease.

• Study the use of pulsars measurements in the absence of pseudoranges.

• Analyze possible advantages of using pulsars in certain galactic geometries in

the attempt to decrease the SISRE.

The bullets above are the desired outputs of the simulation. In order to achieve

these results, a simulation was developed of the GPS constellation, six ground stations,

up to 16 pulsars, as well as the pseudorange and TDOA measurements. A top-level

diagram of the simulation is shown in Figure 3.1. The simulation was implemented

in Matlabr, and each block was an individual function.

Block A1 represents the simulation’s truth model, including the reference tra-

jectory. The A2 function simulated observed pseudoranges of the GPS constellation
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Figure 3.1: Simulation Data Flow Diagram

from six ground stations. Block A3 generated TDOA measurements between GPS

satellites using x-ray signals from up to 16 pulsars. A4 contained the batch filter

function which was used to estimate the state vector components of the GPS constel-

lation. Block A5 represented the function which took the batch filter estimated state

vectors and compared them with the truth trajectory state vectors using metrics such

as the SISRE equation. The following sections will describe each function in detail.

3.1.2 Method of Analysis. Several Matlabr-based scenarios were created to

address the study objectives. By varying the inputs to each function block depicted

in Figure 3.1, different scenarios were created to evaluate the expected improvements

of TDOA measurements to the GPS SISRE. The scenarios were designed to answer

the questions posed in Section 3.1.1 and Chapter 1.
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3.2 Truth Model(A1)

The truth model, composed of algorithms implemented in both Fortran 90 and

Matlab r, took the predetermined positions and velocities of the GPS satellite con-

stellation and propagated their positions and velocities forward in time.

The inputs into the truth model included an ephemeris file for each satellite and

the desired propagation time. The ephemeris file describes the satellite constellation.

An example is shown in Table 3.1. The files utilized were taken from the GPS Yuma

almanac [23] which contains weekly cataloged ephemeris information for each GPS

satellite.

Table 3.1: An example of the GPS satellite ephemeris ele-
ments used as inputs to the truth model

Parameter Value Description
Satellite ID 01 satellite identification number
Eccentricity 0.5290031433E-002 eccentricity of

satellite orbit
Week 259 number of weeks since

the GPS reference time
Time of 589824.0000 time in seconds since the

Applicability(s) beginning of the GPS week
Orbital Inclination(rad) 0.9800063964 inclination of satellite orbit

Rate of Right -0.8103194673E-008 time rate of change of the
Ascension(rads/s) right ascension of the

ascending node√
a(m) 5152.589355 square root of

the semi-major axis
Argument of Perigee(rad) -1.663235148 calculated argument of perigee

Mean Anomaly(rad) -0.3063022203E+001 calculated mean anomaly
Af0(s) 0.3585815430E-003 estimated clock bias

Af1(s/s) 0.3637978807E-011 estimated clock drift

The constellation ephemeris information in Table 3.1 was used to calculate an

initial position, velocity, and clock error of the satellites in the ECEF frame at the

epoch time. The ECEF frame became the standard reference frame used throughout

the simulation. The satellite state vector components used throughout the simulation

are listed below:
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• x - x-component of the satellite ECEF position

• y - y-component of the satellite ECEF position

• z - z-component of the satellite ECEF position

• ẋ - x-component of the satellite ECEF velocity

• ẏ - y-component of the satellite ECEF velocity

• ż - z-component of the satellite ECEF velocity

• clock bias - intrinsic clock error of each satellite and ground station

• clock drift - time rate of change of the clock bias

Using a Runge-Kutta fourth-order numerical integrator, the ECEF state vector

components for each satellite were propagated forward in time to a designated tfinal

time. Thus, the final output for the truth model was a set of propagated ECEF state

vector components for each satellite at each time step.

3.2.1 Equations of Motion. In order to prove the concept of SISRE im-

provement, only the fundamental two-body satellite dynamics were modeled in the

Runge-Kutta algorithm. Lagrangian dynamics were used to propagate the state vec-

tor for each satellite. The Lagrangian function in the inertial frame is:

L =
1

2
(ẋ2

ECI + ẏ2
ECI + ż2

ECI)− V (3.1)

V =
−µ

r
(3.2)

where

ẋ, ẏ, ż are the inertial velocity components

V is the Earth geopotential per unit mass of the satellite

µ is the Earth’s gravitational constant

r is the distance of the satellite from the center of the Earth

Using the transport theorem, the inertial velocity components can be converted

to the ECEF frame which is the reference coordinate system of the GPS system
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~vECI = ~vECEF + ω⊕ × ~rECEF (3.3)

where

~vECI is the inertial velocity vector

~vECEF is the ECEF velocity vector

ω⊕ is the rotational velocity of the Earth (assumed to be constant)

The ECEF frame Lagrangian function now becomes

L =
1

2
[(ẋECEF − ω⊕yECEF )2 + (ẏECEF + ω⊕xECEF )2 + ż2

ECEF ]− V (3.4)

All x, y, z components are now assumed to be in the ECEF frame and subse-

quently all ECEF subscripts will be dropped for simplicity.

The equations of motion in the ECEF frame can now be obtained from the

Lagrange’s equations of motion

d

dt

(
∂L

∂Ẋ

)
− ∂L

∂X
= 0 (3.5)

where

L is the Lagrangian function based in the ECEF frame from Equation (3.4)

Ẋ represents a vector of velocity state components ẋ, ẏ, and ż

X represents a vector of position state components x, y, and z

Equation (3.5) resolves into three independent equations of motion representing

the x, y, and z components of motion. The component terms of Equation (3.5) for x

resolve to become

d

dt

(
∂L

∂Ẋ

)
= ẍ− ω⊕ẏ (3.6)
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∂L

∂X
= (ẏ + ω⊕x)ω⊕ − ∂V

∂x
(3.7)

Subtracting the terms of Equations (3.6) and (3.7) according to Equation (3.5)

yields

ẍ− 2ω⊕ẏ − ω2
⊕x = −∂V

∂x
(3.8)

where
∂V

∂x
=

µx

r3
(3.9)

and

r =
√

(x2 + y2 + z2) (3.10)

Applying a method similar to that mentioned above for y and z components,

the final three independent equations of motion for x, y, and z become

ẍ− 2ω⊕ẏ − ω2
⊕x = −µx

r3
(3.11)

ÿ + 2ω⊕ẋ− ω2
⊕y = −µy

r3
(3.12)

z̈ = −µz

r3
(3.13)

Equations (3.11), (3.12), (3.13) were solved by transforming each second-order

differential equation into two first-order differential equations. Integrating these 6

components of Lagrange’s equations yielded the 6 (x, y, z, ẋ, ẏ, ż) ECEF-based

equations of motion for the GPS satellites.

3.2.2 Orbital Perturbations. The most significant force acting on any given

GPS satellite is the Earth’s central gravitational force (geopotential) which adds accel-

erations of approximately .56 m/s2 to the motion of the satellites [30]. Other orbital

perturbation forces such as solar/lunar gravity, solar radiation, drag, etc., contribute

far less acceleration to the satellites’ motion (≤ 10−6 m/s2) [30]. Although a simple
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two-body satellite dynamics model was used in this research, the Runge-Kutta algo-

rithm could be modified to incorporate lesser acceleration terms (e.g., solar radiation,

three-body dynamics, etc.) for a higher fidelity simulation model.

The primary perturbation for this simulation came from the highest order term

of the gravitational geopotential model, which is represented by Equation (3.2). To

simulate a higher fidelity Earth geopotential, a WGS 84 Earth Gravitational Model

96 (EGM96) function developed by NASA/NIMA can be used. The EGM96 gravita-

tional potential function is modeled as [30]:

V (r, φ′, λ) =
µ

r
[1 +

maxord∑
n=2

n∑
m=0

(a

r

)n

Pnm(sinφ′)(Cnmcos(mλ) + Snmsin(mλ))] (3.14)

where

n and m are the spherical harmonic indices degree and order respectively

µ is the Earth’s gravitational constant

φ′ is the geocentric latitude

r is the radius of the satellite’s orbit from the center of the Earth

λ is the longitude

a is the semi-major axis length of the WGS 84 ellipsoid

Pnm are the associated Legendre functions and polynomials

Cnm and Snm are the spherical harmonic coefficients used to describe the gravity

field

maxord is the maximum order of the geopotential

The degree(n) and order(m) of the coefficients ranged from 0 to a maximum

value of 50. To ensure that a truth model represented a highly accurate trajectory,

a simulation could propagate the GPS satellite equations of motion using a 50 by 50

(order/degree) geopotential function.

For this simulation, it was determined that a two-body physics model would be

sufficient to conduct research on relative SISRE improvement with the introduction
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of TDOAs. It is important to note that a more realistic simulation would model the

small stochastic perturbations (e.g., y-axis bias) that slowly build up over time if

not accounted for. It is not necessary to model the large, deterministic errors such

as solar/lunar gravity because the GPS operational Kalman filter is able to deter-

ministically account for these large effects on the GPS satellite orbits. However, the

stochastic perturbations cannot be deterministically eliminated. Therefore, in order to

generate operationally realistic SISREs for the GPS constellation, it is recommended

that only the small effects of the stochastic errors be incorporated into the batch filter

because it can be assumed that the large error sources have been accounted for.

Lastly, it should be emphasized that the results of this simulation, even without

the implementation of small perturbing forces, can still be considered valid. In an

orbit determination problem, most of the perturbing force acceleration for a satellite in

Medium Earth Orbit (MEO) comes from the Earth’s central gravity force – which has

been accounted for by the 2-body propagator in this simulation. The incorporation of

small perturbations was desired for realism but, as stated earlier, take time to build

up in a satellite’s orbit. It has been assumed that relative SISRE magnitudes will not

be significantly affected by the omittance of the small perturbations affecting GPS

satellites. Therefore, the central goal of analyzing the relative SISRE behavior of

the GPS constellation with the introduction of TDOAs is still a valid and attainable

goal with the 2-body orbit propagator.

3.2.3 Clock Model. At the heart of GPS is a system of precisely synchro-

nized clocks. Satellite clock synchronization is achieved by estimating the time offset,

drift, and drift rate of each satellite clock relative to GPS time and transmitting the

clock parameters of this estimated model in the satellite’s navigation message. Subse-

quently, each satellite broadcasts its characteristic clock parameters to the user [30].

This research was concerned with properly simulating the real performance of

Cs and Rb atomic clocks used by the GPS satellites and monitor stations in the

truth model. Therefore, the true GPS clock performance had to be measured and
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approximated for use in the batch filter estimator. Without accurately estimating

the time dependent clock errors of GPS, it would not have been possible to correctly

simulate the satellite positions and velocities or model the pseudorange measurements

between the monitor stations and the satellites. We start first with the development

of the equations and concepts of a GPS atomic clock truth model.

The performance of atomic clocks can be simulated using a 3-state polynomial

process driven by white noise. The discrete process model and its covariance can be

written as [6]:

Φ(τ) =




1 τ 1
2
τ 2

0 1 τ

0 0 1


 (3.15)




x1(tk+1)

x2(tk+1)

x3(tk+1)


 =




1 τ 1
2
τ 2

0 1 τ

0 0 1







x1(tk)

x2(tk)

x3(tk)


 +




w1(k)

w2(k)

w3(k)


 (3.16)

Qk(τ) = E
[
w(k)w(k)T

]
=




q1τ + 1
3
q2τ

3 + 1
20

q3τ
5 1

2
q2τ

2 + 1
8
q3τ

4 1
6
q3τ

3

1
2
q2τ

2 + 1
8
q3τ

4 q2τ + 1
3
q3τ

3 1
2
q3τ

2

1
6
q3τ

3 1
2
q3τ 2 q3τ


 (3.17)

where

x1(tk) and x1(tk+1) are the clock bias error at times tk and tk+1

x2(tk) and x2(tk+1) are the clock drift error at times tk and tk+1

x3(tk) and x3(tk+1) are the clock drift rate error at times tk and tk+1

τ = tk+1-tk, the time interval

w1(k), w2(k), and w3(k) are independent white noises

q1, q2, and q3 are the continuous process noise power spectral densities repre-

senting the bias, drift, and drift rate respectively

Φ(τ) is the state transition matrix which propagates the current clock bias,

drift, and drift rate errors forward in time from tk to tk+1. The clock process noise
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terms are w1, w2, and w3. The clocks, because of their stochastic nature, cannot

be modeled deterministically. By modeling the performances of the random walk

noise values w1, w2, and w3, the characteristic Allan Variance curves of the atomic

frequency standards can be matched [7]. Figure 3.2 depicts an example of a 3-state

random clock process. Drawing a best fit curve through the plot, it is evident that

the performance of a three-state atomic clock is quadratic in nature.

Figure 3.2: Comparison of simulated clock error and
quadratic fit (used in batch filter)

The statistics of w1, w2, and w3 are determined by the values of the variance elements

(qn) of Qk in Equation (3.17) [5].

As was stated earlier in Section 1.5.1.1, each GPS satellite depends on either

a Cesium (Cs) or Rubidium (Rb) clock to provide a stable output frequency. This

simulation used research conducted in the Clock Improvement Initiative [21] to choose

q values for Equation (3.17). Table 3.2 shows the resulting q values for the Rb and

Cs clocks following the conclusion of the Clock Improvement Initiative [21].

In order to calculate each GPS satellite clock’s 3-state random process in the

simulation, initial clock bias and drift parameters were gathered from [23] for each

satellite. The initial drift rate (derivative of drift) for each GPS clock was assigned
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Table 3.2: Process Noise Values for GPS Rb and Cs Clocks

Rubidium Clock Cesium Clock
q1 (bias) 1.11 × 10−22s2/s 4.44 × 10−22s2/s
q2 (drift) 2.22 × 10−32s2/s3 3.33 × 10−32s2/s3

q3 (drift rate) 6.66 × 10−45s2/s5 0s2/s5

a value of zero. The bias, drift, and drift rate initial values were propagated each

time step using Equation (3.16). In order to calculate the w1, w2, and w3 terms of

each GPS clock for each time step, Equation (3.17) was multiplied by a Matlabr

random number generator in order to scale the amount of random walk for each clock

at each time step. Rb clock q values were chosen for each GPS clock because of the

singularity that the Cs clock q3 value created when propagating the clock states with

the 3-state model being implemented.

3.2.4 Ground Stations. In order to replicate operational pseudorange ob-

servations, the locations of the six current global ground stations were simulated.

Table 3.3 lists the six ground stations used to observe and track the positions of the

GPS satellites [48].

The operational clock biases, drifts, and drift rates for all ground stations were

approximated in the simulation to be similar to the satellites. Scaled by the range of

known clock bias and clock drift terms for GPS satellite constellation, each ground

station was given a random initial bias and drift. The drift rate was assumed to

start at zero for each ground station. The ground station clocks were subsequently

propagated using the satellite clock propagation procedure explained in Section 3.2.3.

3.3 Pseudoranges(A2)

Using the state vector outputs of the truth model in block A1, block A2’s func-

tion was to convert satellite state vectors into pseudorange observations. The pseu-

doranges were meant to simulate imperfect measurements of the true GPS satellite
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positions generated in block A1 from one of the six ground stations located around

the Earth.

3.3.1 Pseudorange Calculation. In order to calculate the set of possible

pseudorange observations for a given simulation time period, the simulation first had

to determine which satellites were visible for each ground station location at each

time step. The visibility of each satellite by each ground station is a function of the

satellite position and ground station position. A satellite was defined as visible from a

ground station if the satellite’s elevation was greater than 0 deg. Elevation is defined

as the angle measured from the local horizon up to the satellite position vector in

the topocentric-horizon based SEZ (south-east-zenith) frame. The elevation angle is

depicted in Figure 3.3.

Table 3.3: Ground Station Locations

Location Latitude (North) Longitude (East)
Cape Canaveral 28.4 deg 279.4 deg
Ascension Island -8.0 deg 345.6 deg

Diego Garcia -7.3 deg 72.4 deg
Kwajalein Atoll 8.7 deg 167.7 deg
Colorado Springs 38.8 deg 255.2 deg

Hawaii 21.2 deg 202.5 deg

An elevation calculation algorithm was designed to keep track of every satel-

lite’s position with respect to each ground station location. An elevation angle was

calculated for each satellite-ground station pair for each time step. The algorithm

stored every satellite-ground station pair where the elevation angle was above 0 deg.

The A2 function block generated pseudoranges for all visible (elevation > 0 deg)

satellite-ground station pairs.

To calculate each pseudorange, a geometric distance was first calculated using

Equation (2.18). For each geometric range, measurement errors were added to sim-

ulate actual measurements. It is the measurement errors that convert a geometric
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Figure 3.3: The satellite elevation angle is measured from the
local horizon up to the satellite position vector.

range into a pseudorange. The measurement errors modeled in this simulation will

be described in the next section.

3.3.2 Pseudorange Measurement Effects. The clock and measurement er-

rors that exist between each satellite-ground station pair yield uncertainties in Equa-

tion (2.18) that must be accounted for before the position of each satellite can be

determined. This simulation modeled four major sources of signal error - clock bias,

tropospheric delay, multipath delay, and receiver error due to noise. Other signal

propagation sources of error that exist between any given satellite-ground station

pair, such as ionospheric delay and relativism, were not explicitly modeled. These

and other errors were accounted for because of either their deterministic nature or

because they were negligible compared to the other modeled errors.

3.3.2.1 Pseudorange Clock Errors. Before the clock biases of the satel-

lites and ground stations can be understood, we must first understand the composite
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time, called GPS Time (GPST), which provides a common reference. GPST is defined

as a composite time because there is no master clock that serves as the benchmark for

its output time. GPST is derived from a set of measurements of the atomic frequency

standards that reside in every satellite and ground station [30]. Using a Kalman-Bucy

filter, all the clocks are estimated together to create an ensemble time [6]. The bias of

a satellite and ground station in a pseudorange measurement can be represented as:

δtsat = tsat − tGPS (3.18)

δtG/S = tG/S − tGPS (3.19)

where

δtsat and δtG/S are the clock biases of the GPS satellites and ground stations

respectively

tsat and tG/S are the times kept by the satellite and ground station clocks re-

spectively

tGPS is the composite GPS system time

The deviations of each individual satellite and ground station clock from the

composite GPST are represented by δtsat and δtG/S [30]. As explained in Section 2.4,

the inherent clock biases of each satellite and ground station affect our ability to

measure the true transmission and reception time of a signal from the satellites to the

Earth. The clock biases distort the true measurement of satellite position calculated

in Equation (2.18).

3.3.2.2 Tropospheric Delay. In addition to the clock biases that affect

our measurements of the satellite transmitted signals, GPS signals are also delayed

and refracted on their path to the receiver because of effects in the tropospheric region

of the atmosphere. The troposphere can be characterized as the lower neutral part

of the atmosphere. The GPS signal delays in this region are a function of the atmo-

spheric pressure, temperature, and humidity [50]. Knowledge of these tropospheric
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effects allows one to model the refractivity and corresponding signal delays due to the

troposphere.

The tropospheric errors for each site were functions of the ground station al-

titudes, the local relative humidity at each site, as well as satellite elevation angles

for each satellite-ground station pseudorange pair. To calculate tropospheric errors

at each ground station, a tropospheric error value was calculated by defining modeled

and true tropospheric delay values for each ground station. The modeled tropospheric

errors used a relative humidity of 50%. The true tropospheric values used a random

relative humidity of 50% +/- 10%. The tropospheric errors for each site were cal-

culated by differencing the modeled and true tropospheric values. Using a modified

Hopefield tropospheric model, a tropospheric delay value was assigned to each pseu-

dorange observation. This approach simulates the effect of not having a perfect model

of the troposphere at each ground station (which is true in of the operational GPS

system).

3.3.2.3 Multipath Delay. Another major error source in GPS signal

propagation is the effect of multipath. Multipath occurs when GPS signals, reflected

off of another surface, simultaneously arrive together at a receiver with unimpeded

(nonreflected) signals from the same source [50]. Mathematically modeling (and cor-

recting for) multipath errors is not feasible because the errors depend on complex

factors involving the geometry of the situation. Multipath is more likely to occur in

a city with many buildings than in the middle of the ocean. Solutions to the problem

of multipath will not be detailed here but can be found in [30] and [50]. In this sim-

ulation, multipath was modeled as a white, Gaussian random error with a standard

deviation of 1.4 m [33]. The random multipath delay values were added to each pseu-

dorange observation. Note that real multipath errors will tend to be time-correlated,

and a more realistic multipath error model would attempt to take this into account.

3.3.2.4 Receiver Error. Finally, other systematic unmodeled pseudo-

range errors are characterized in a noise term that include receiver noise and miscel-
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laneous system hardware errors. The signal delays accounted for in this term include

noise from antennas, amplifiers, cables, interference from other GPS signals and GPS-

like broadcast signals [30]. In this simulation, receiver error was modeled as a white,

Gaussian random error with a standard deviation of .5 m [33].

3.3.3 A2 Block Output. The “noised” pseudorange equation can be ex-

pressed as:

ρ =
√

(xsat − xG/S)2 + (ysat − yG/S)2 + (zsat − zG/S)2 + c(δtG/S − δtsat)+ νPR (3.20)

νPR = c(δttropo + δtmultipath + εnoise) (3.21)

where

xsat, ysat, zsat is the ECEF position of the GPS satellite

xG/S, yG/S, zG/S is the ECEF position of the ground station

xtrans, ytrans, ztrans is the position of the transmitter

δttropo is the delay in signal due to tropospheric effects expressed in units of

seconds

δttropo is the delay in signal due to multipath effects expressed in units of seconds

δttropo is the delay in signal due to ground station noise and receiver hardware

errors expressed in units of seconds

νPR is the combined pseudorange error term expressed in units of meters

c is the speed of light in meters per second

Block A2 passed out calculated values of Equation (3.20) into the simulation

batch filter (block A4). Block A2’s pseudoranges represented real world observations

of the GPS constellation. These observations will be used later in block A4 to calculate

measurement residuals for the batch filter.
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3.4 Pulsar Based TDOAs(A3)

Block A3, in Figure 3.1, represented the generation of operational TDOA mea-

surements using a bank of selected millisecond pulsars as the transmitters and pairs

of GPS satellites as the receivers. Table 3.4 lists the pulsars used in this simulation.

For each simulation scenario, various pulsars were selected to be utilized for that par-

ticular experiment; all pulsars were not necessarily used simultaneously. Pulsars were

chosen based on their attributes that matched the following set of criteria:

• Pulsars had to be millisecond pulsars exhibiting rotation periods ranging be-

tween 1.5 ms and 30 ms

• Pulsars had to emit radiation in the x-ray waveband

• Pulsars had to emit pulsed radiation and not solely point radiation

• Pulsar fluxes or pulsed luminosities must have been observed in the x-ray wave

band

As stated in Chapter 2, the pulsar name describes the pulsar direction (RA/Dec)

in terms of degrees, hours, and minutes. In order to be useful, pulsar directions were

converted to decimal degrees then subsequently into the ECEF frame. This procedure

will be outlined in the next section.

The flux attribute was approximated for each pulsar. Using references [4,36,51],

the flux, in units of ergs/cm2/s was converted to photons/cm2/s, because the desired

measurement for the detector would be the number of photons that pass through the

detector area per second and not just the total energy that was detected. Based on

the millisecond pulsar criteria outlined in Section 2.5.3, the Crab Pulsar does not

meet the requirements for the pulsar selection process. However, the Crab Pulsar’s

relatively large flux value and near-millisecond pulsar period made it advantageous to

the simulation in terms of the low σTOA it could provide for the TDOA measurements.

Sample flux calculations are presented in Appendix B.
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Table 3.4: Characteristics of the pulsars used in this simula-
tion [4, 36, 38,43,51]

Pulsar Period Flux Observation Energy Level
(s) (photons/cm2/s) (keV/photon)

B0531+21 (Crab Pulsar) .0334 10.34375 0.6
B1821-24 0.00305 0.000710227 1.1
B1937+21 0.001557 0.00023125 1.0
B1257+12 0.00622 0.00001375 0.5
B1820-30A 0.00544 1.21 2.5
B1620-26 0.001107 0.0000125 0.5

J1012+5307 0.00525 0.000015625 0.5
J0218+4232 0.00232 0.0001075 2.5
J0751+1807 0.00347 0.000053625 0.5
J2322+20 0.0048 0.0000075 0.5
J2019+24 0.00393 0.000022375 0.5
J2124-3358 0.00493 0.00010325 0.5
J1024-0719 0.00516 0.000011075 0.5
J1744-1134 0.00407 0.00000805 0.5
J0030+0451 0.00486 0.00015875 0.5
J0437-4715 0.00575 0.0005375 0.5

The pulsar flux is a function of the energy level at which it is observed (see

Appendix B). Operationally, the telescopes observe pulsar fluxes over an energy range

in units of kilo-electron volts (keV) per photon [4, 36, 51]. The pulsars used in this

simulation were observed at energy levels that ranged from 0.1 - 10 keV [4,36,51]. As

an approximation, the pulsar fluxes in this simulation were calculated at specifically

chosen energy levels within their stated range.

It is important to note that this research attempted to approximate reasonable

flux values for the set of pulsars in Table 3.4. For pulsars J1012+5307, J0751+1807,

B1257+12, B1820-30A, B1620-26, J2322+20, J2019+24, J1024-0719, and J1744-1134

there is uncertainty in the actual x-ray pulse characteristics that contribute to their

flux. However, for the purposes of this simulation it was important to simulate the

ability to collect x-ray signals from a varying range of bright and dim galactic x-ray

sources in a widely dispersed geometry and use them to create TDOA observations.

Subsequent simulations that are not concerned solely with proving the concept of
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TDOA observations might only use the pulsars that are widely known to exhibit

observable, identifiable, pulse profiles. The following pulsars are recommended for

an operationally accurate simulation because their attributes (e.g., flux, period) have

been experimentally verified - PSRs B0531+21, J0437-4715, B1821-24, J2124-3358,

B1937+21, and J0030+0451.

3.4.1 TDOA Calculation. In order to use the pulsars in the TDOA ob-

servations, their positions had to be converted from a RA/Dec frame to the ECEF

frame – the reference coordinate system of GPS. All pulsars were first converted to the

J2000.0 coordinate system if they were not already expressed as such. The RA/Dec

coordinates of each pulsar were subsequently converted to ECI unit vectors. The

position of each pulsar can only be expressed as a unit vector because the RA/Dec

frame is directional based and not distance based. Pulsar distances are so large that

they are essentially considered to be at infinity for the simulation [38]. The ECI unit

vectors were then converted to the ECEF frame. In the ECI frame these vectors are

constant, because the inertial positions of the pulsars are constant. However, in the

ECEF frame, the pulsar unit vectors rotate once per day with the Earth. Physically,

this concept makes sense because observers in the ECEF frame (i.e., on the Earth’s

surface) observe the stars rising and setting each day.

To account for this time varying phenomenon in the simulation, the initial

position of each pulsar was rotated to its next position at the next time step using

successive rotations about the third axis (z-axis). It was assumed that the Earth’s

rotation is constant and therefore the following equation could be used to rotate from

one ECEF position to another:

ECEFk+1 =




cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1


 ECEFk (3.22)

where
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ECEF is the position unit vector of the pulsars

t is the time step interval

k is the current time

k + 1 is the future time step

ω is the Earth’s rotational velocity

Figure 3.4 depicts the successive rotations from the inertial ECI frame to the ECEF

frames at each time step.

Using the propagated pulsar positions combined with the A1 generated satel-

lite propagated positions, a visibility algorithm was implemented to determine which

satellites could see which pulsars at every time step. Figure 3.5 illustrates how pulsar-

satellite visibility requirements were satisfied.

Figure 3.4: In the ECEF frame the positions of the pulsar
are not constant and in fact rotate once per day
with the Earth’s rotation. θg represents the rota-
tion angle between the ECI and ECEF frames. At
each successive time step, the Earth’s rotational
velocity (ω) is multiplied by the elapsed time in-
terval (t) since epoch to yield the pulsars’ new
ECEF position at time k+1
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Figure 3.5: Pulsar Visibility Diagram

The central assumption made during the implementation of the pulsar visibility

algorithm was that the distances of all pulsars from the Earth is so great that they

approach infinity when compared to the Medium Earth Orbit (MEO) distances of

the GPS constellation. Therefore, the unit vectors from the Earth to the pulsar

and from the satellite to the pulsar are essentially parallel as depicted in Figure 3.5.

Following the vectors and angles presented in Figure 3.5 and using the infinite distance

assumption, it can be said that:

r̂SP
∼= r̂EP (3.23)

where

r̂SP is the ECEF unit vector from the satellite to the pulsar
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r̂EP is the ECEF unit vector from the center of the Earth to the pulsar

and since

r̂SE = −r̂ES

cos ϕ = r̂SE · r̂SP = −r̂ES · r̂EP

the angle ϕ can be calculated as

ϕ = arccos(−r̂ES · r̂EP )

Finally, the angle θ can be computed using the equations,

sin θ =
RE

r

θ = arcsin

(
RE

r

)

It can therefore be said that a pulsar will only be visible to any given satellite

when ϕ ≥ θ. The pulsar visibility algorithm used the above equations to determine

which satellites were able to detect x-ray signals from one of the pulsars utilized in

the simulation. If ϕ ≤ θ, then that TOA was discarded due to the pulsar signal being

blocked by the Earth.

Perfect TDOAs were calculated by projecting the distance between the satellites

in the direction of the transmitting pulsar source. Using the concepts developed in

Chapter 2, a perfect (unnoised and unbiased) TDOA was represented as:

TDOAi−j = (~ri − ~rj) · n̂ (3.24)

where

~ri is the ECEF position vector of satellite i
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~rj is the ECEF position vector of satellite j

n̂ is the unit vector in the direction of the transmitting pulsar

Mathematically, the projection of the distance between satellites in the direction

of the pulsar was accomplished by computing the dot product of the satellite distance

vector and the pulsar direction vector. Equation (3.24) corresponds to the Ri−j term

in Equation (2.30). Figure 3.6 graphically depicts Equation (3.24) and is analogous

to Figure 2.9.

Figure 3.6: TDOA Diagram

3.4.2 TDOA Measurement Effects.

3.4.2.1 Clock Bias. Satellite clock biases were added to Equation (3.24)

to account for the timing errors between satellite i and satellite j. The TDOA clock

bias concept was described in Section 2.6 by Equation (2.30).
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3.4.2.2 TOA Measurement Errors. The error in measuring a pulsar

signal TOA is embodied in Equation (2.20). This section will outline how each com-

ponent of Equation (2.20) was calculated for the simulation. The operational method

for determining HWHM for a pulsar pulse was described in Chapter 2. However,

HWHM was approximated in this simulation using two assumptions:

• Each pulse width was approximated as a Gaussian curve which forced the

HWHM to represent the 1σ value of a pulsar pulse [38,43]

• The pulse widths of pulsars can typically be approximated by using anywhere

from 2% to 20% of their pulse periods [38,43]

Physically, these assumptions make sense when a Gaussian shaped pulsar pulse

is visualized. As stated in Chapter 2, the fundamental goal of pulsar pulse timing is to

measure the location of the pulse peak as accurately as possible. Geometrically, it is

easier to precisely determine the peak location of a narrow pulse than if the pulse was

wider and flattened. A HWHM that is approximated by 2% of its period would make

each pulsar pulse appear narrower and correspondingly, a HWHM approximated by

20% of its period would make that same pulse appear wider. Therefore, using this

approximation, it was possible to artificially lower σTOA for each pulsar. Using 2%

of the pulse period represented an optimistic value that would produce lower σTOA’s

whereas 20% yielded very conservative (i.e., higher and less accurate) σTOA values.

To calculate HWHM for this simulation, the assumptions listed above were used

to derive the equation [38,43]:

HWHM = X%
(PulsePeriod)

2
(3.25)

where

X represents a percentage that ranges between 2% and 20%

PulsePeriod is the characteristic period of each pulsar listed in Table 3.4

3-24



As a starting point for the simulation, a nominal value of 10% was used to

calculate the HWHM value for each σTOA. A value of 1µs was chosen for σγ. This

number was chosen based on research conducted of current operational x-ray detectors

[25,38,39]. HWHM∗ (as described in Section 2.5.4) was calculated by summing the

HWHM and σγ in quadrature. The area and time components of S and B from

Equation (2.23) and Equation (2.24) were given a range of values to vary the overall

σTOA values.

Based on the pulse period and flux attributes, which are characteristic of each

pulsar, every pulsar was assigned a unique σTOA. Each time a TOA was calculated

between a satellite and a particular pulsar, the pulsar’s particular σTOA was used to

compute a randomly generated pulsar measurement error for each satellite:

α = σTOA(X) (3.26)

where X represents a randomly selected number with a mean of 0 and a variance of

1.

In each TOA observation, the simulation assigned a randomly generated pulsar

measurement error for each involved satellite. The randomness ensured that no two

TOAs exactly duplicated themselves from two different satellites. The TDOA mea-

surement noise term was then calculated by adding the two satellite generated pulsar

measurement errors together. The TDOA measurement noise term can be expressed

as:

ν = αi + αj (3.27)

where

α represents the satellite generated pulsar measurement error measured in units

of time

i is the index for satellite 1, the primary satellite in each TDOA observation
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j is the index for satellite 2, the secondary satellite in each TDOA observation

Finally, ν, measured in seconds, was added to the perfect TDOA equation (Equa-

tion (3.24)) for each generated TDOA.

3.4.3 A3 Block Output. The final TDOA equation, which accounts for clock

bias and measurement noise can be expressed as:

TDOAi−j = (~ri − ~rj) · n̂ + c(δti − δtj) + cν (3.28)

where c represents the speed of light used to scale the bias and noise terms as distances.

Block A3 output TDOA distances calculated for all visible pulsar-satellite-pair

events at each time step. These observations were passed into the batch filter to be

used in the residuals calculations.

3.5 Batch Filter(A4)

In order to accomplish the research objectives, block A4 was designed to handle

three different types of estimation scenarios

• Estimation of initial epoch states using pseudoranges only

• Estimation of the initial epoch states using both pseudoranges and TDOAs

• Estimation of the initial epoch states during pseudorange blackouts using TDOA-

only observation intervals

The purpose of block A4 is to calculate corrections to the approximations of

the GPS satellite initial states at epoch. In an operational setting, the true epoch

state will never be precisely known. Therefore, in order to simulate our ignorance of

the true state, the initial ECEF states of each GPS satellite had to be “corrupted.”

Ideally, the filter estimated corrections for each GPS satellite state vector should align

the corrupted state values to the true epoch state values.
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The first operation of A4 was to load in the initial states of the GPS constellation

calculated in A1 and subsequently randomly offset each component of the initial state

vector from its corresponding truth value. Table 3.5 lists each component of the state

vector and the 1σ to offset its value from truth.

Table 3.5: Corrupted state vector generation

State Component 1σ Offset
x 3m
y 3m
z 3m
ẋ 0.01 m/sec
ẏ 0.01 m/sec
ż 0.01 m/sec

bias 3 m
drift .03 m/15 min

Next, the simulated operational pseudoranges from A2 and the simulated real

world TDOAs from block A3 were input into A4. A successful batch filter would

use the pseudoranges and/or TDOAs to differentially correct or improve the initial

“corrupted” estimates of the true epoch states so that they approached the true epoch

state vector values [50]. In order to accomplish its estimate of truth, the simulation

batch filter used the following equation based on the concepts developed in Section 2.3.

δx(t0) = (T T WT )−1(T T W~r) (3.29)

The value of δx(t0), which represents the batch filter’s correction to the original

estimate of the state vector, was used in an iteration scheme to compute the final best

estimate of the GPS satellite state vectors. Equation (3.29) was used to differentially

correct the original estimate of the GPS satellite state vectors in order to align them

with the truth model state vectors in the following equation

x̃(t0) = x̄(t0) + δx(t0) (3.30)
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where

x̃(t0) is the current best estimate of the state vector based on the corrections to

the previous estimate

x̄(t0) is the previous estimate of the state vector

The following sections will outline how the components of Equation (3.29) were

calculated in order to compute the best estimate of the GPS satellite state vectors.

First, the concept of clock estimation will be outlined. Next, calculation of the T, W,

and r matrices will be treated for each basic type of observation - pseudorange and

TDOA.

3.5.1 Clock Error Estimation Model. The output of the atomic frequency

standard can be written as

T (t) = t + δ(t) (3.31)

where

T(t) is the clock output time

t is the true clock output time

δ(t) is the clock error

The ideal atomic clock would forever remain stable and output the true time

(t) with no error. However, no clock is perfect. The ability of a clock to keep time

is related to its frequency stability. The δ(t) term, which is used to model and

approximate clock truth model error, can itself be written as an equation [30]

δ(t1) = ∆t(t0) +
∆f

f0

(t1 − t0) +
ḟ

2f0

(t1 − t0)
2 +

∫ t1

t0

f̃(t)

f0

dt (3.32)

where

t0 is the epoch time

t1 is the final time

∆ t is the time error (bias)

3-28



f0 is the true frequency of the source. Each frequency term is divided by this

value to create a normalized or relative term

∆ f is the frequency deviation of the clock from its specified value (f - f0) where

f is the actual frequency of the clock

ḟ is the frequency drift

f̃ (t) is the random frequency error

The first three terms in Equation (3.32) represent systematic effects that are

estimated by comparing the clock with a reference clock. The last term represents a

random clock performance effect and is characterized by its variance [30].

In order for the MCS to maintain precise synchronization of the clocks aboard

the satellites, it is essential that δ(t) be modeled to accurately simulate the errors of

the clock’s true frequency behavior. The MCS determines the error in each satellite

clock on the basis of pseudorange measurements from the monitor stations [30]. The

error of each satellite clock can be written as

δ(t)s = ts − tGPS (3.33)

where

δ(t)s is the clock error for satellite s

ts is the time kept by the clock for satellite s

tGPS is GPS time. GPS time is determined by estimating all the clocks in the

GPS system together as an ensemble by treating no individual clock as the master

The clock error, (δ(t)s), for each satellite is modeled as a quadratic function

over a time interval

δ(t)s = af0 + af1(tGPS − t0c) + af2(tGPS − t0c)
2 + η(t) (3.34)

where

t0c is the reference epoch time for the generation of the clock error model

af0 is the clock offset (clock bias) in seconds
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af1 is the fractional frequency offset (clock drift) in seconds/second

af2 is the fractional frequency drift (clock drift rate) in seconds/second2

η(t) represents the random frequency error

The clock error correction terms (af0, af1, and af2) represent numerical coef-

ficients of the quadratic function used to model the clock error in Equation (3.31).

These correction terms are regularly uploaded to each GPS satellite by the OCS and

are broadcast to GPS users as part of the navigation message to help correct for each

satellite’s inherent clock bias. Proper correction terms keep the satellite clocks syn-

chronized with GPS time to within 5 – 10 ns [30]. The best fit line drawn through

the plot in Figure 3.2 depicts a quadratic best fit of the clock’s performance using the

af0, af1, and af2 correction terms. It is immediately obvious that Equation (3.34) is

related to Equation (3.32). The terms of Equation (3.34) and Equation (3.32) can be

exactly equated so that we can write

af0 = ∆t(t) (3.35)

af1 =
∆f

f0

(3.36)

af2 =
ḟ

2f0

(3.37)

η(t) =

∫ t1

t0

f̃(t)

f0

dt (3.38)

This simulation will use the clock correction terms to simulate the bias of each

satellite and monitor station. The η(t) term also represents the relativistic corrections.

However, because this term is deterministic, this simulation will assume that it has

been corrected for.

Finally, it is important to note that two assumptions were made concerning the

estimation of the clocks for the GPS system. First, of the three clock terms to estimate

in Equation (3.34), only af0 and af1 were estimated in the filter. The quadratic drift
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rate term, af2, which is on the order of 10−45, was found to have a negligible effect

on the the linearity of the [af0 + af1(tGPS − t0c)] part of Equation (3.34) for the time

periods in question (1 day or less). Secondly, the ground station clocks were not

estimated in the filter (the ground station clock errors were assumed to be perfectly

known). Only the satellite clocks were estimated in the batch filter.

3.5.2 T Matrix. This simulation computed the position and velocity com-

ponents of the T matrix numerically as an approximation to the analytical solution

in Equation (2.10)

T =
∂observations

∂X0

=
∂observations

∂X

∂X

∂X0

= HΦ

(3.39)

where

X is the current state vector

X0 is state vector at epoch
∂observations

∂X
is equal to H the observation partial derivative matrix

∂X
∂X0

is equal to Φ the state transition matrix

Analytically, H is calculated using Equation (2.9). As stated in Chapter 2,

the G function describes the measured data in terms of the states of the reference

trajectory xref [52].

zj = G(xref ) + ε (3.40)

where

zj is the measurement used to obtain an estimate of the satellites’ state and j
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is the number of available measurements

G(x ) is the measured data function described in Equation (2.8)

This simulation used two different types of measurements in the numerical com-

putation of the T corresponding to the two different types of observations:

z1 = ρ =
√

(xsat − xG/S)2 + (ysat − yG/S)2 + (zsat − zG/S)2 + c(δtG/S − δtsat) + ε

(3.41)

z2 = TDOAi−j = (~ri − ~rj) · n̂ + c(δti − δtj) + ε (3.42)

where ε is the zero-mean random process such that E[ε] = 0 [34].

For each measurement zj, ε represents the uncertainty in each measurement.

For the pseudoranges, ε is representative of the tropospheric, multipath, and receiver

measurement errors outlined in Section 3.3. For the TDOA measurements, ε repre-

sents the σTOA term explained in Section 3.4.

As presented in Chapter 2, if T were to be calculated analytically, each row of

the H matrix, which corresponds to a separate observation, would be multiplied by a

corresponding Φ matrix to map the observations to the epoch time. However, in this

simulation, the position and velocity elements of T were numerically approximated

in one calculation. Symbolically, the T matrix takes the form of:

Tn,m =


 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 A1,8

B1,1 B1,2 B1,3 B1,4 B1,5 B1,6 B1,7 B1,8


 (3.43)
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A1,1 =
∂TDOAi

∂x0

B1,1 =
∂Pseudorangei

∂x0

A1,2 =
∂TDOAi

∂y0

B1,2 =
∂Pseudorangei

∂y0

A1,3 =
∂TDOAi

∂z0

B1,3 =
∂Pseudorangei

∂z0

A1,4 =
∂TDOAi

∂ẋ0

B1,4 =
∂Pseudorangei

∂ẋ0

A1,5 =
∂TDOAi

∂ẏ0

B1,5 =
∂Pseudorangei

∂ẏ0

A1,6 =
∂TDOAi

∂ż0

B1,6 =
∂Pseudorangei

∂ż0

A1,7 =
∂TDOAi

∂bias
B1,7 =

∂Pseudorangei

∂bias

A1,8 =
∂TDOAi

∂drift
B1,8 =

∂Pseudorangei

∂drift

where

n is the number of observations corresponding to the number of rows of T

m is the number of states to be estimated corresponding to the number of

columns of T

i is the index from 0 to N of the number of available TDOA observations

j is the index from 0 to N of the number of available pseudorange observations

In actuality, Equation (3.43) represents the partial derivative components for

only one satellite in the GPS constellation. The simulation’s T matrix contained

n rows corresponding to each observation and up to 232 columns (8 states by 29

satellites). Each satellite’s state vector was assigned a column for each row of T. For

example, satellite 1’s partial derivatives spanned from columns 1 to 8; satellite 29’s

partial derivative elements spanned from columns 225 to 232. In the larger T matrix,

each row took the form:

T =
[
satellite1|satellite2| · · · |satelliteN

]
(3.44)

where
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satellite 1· · · satellite N represents one of the partial derivative sets (An,1· · ·An,8

or Bn,1· · ·Bn,8) of Equation (3.43) depending on if the satellite was involved in a pseu-

dorange or TDOA.

For each row of T, the only elements populated with nonzero partial derivative

values were for satellites involved in the observation. For example, if row 1 represents

a pseudorange involving satellite 1, then only the first 8 columns of row 1 would be

populated with nonzero elements. If row 2 represented a TDOA between satellites 1

and 3 then only columns 1 through 8 and 17 through 24 would be populated with

nonzero elements.

To calculate each position and velocity element of T, a numerical method called

finite differencing was used. A brief explanation of finite differencing will be presented

here. A more thorough treatment of this topic can be found in [50]. Finite differencing

approximates the partial derivatives of T by calculating the effects that making small

changes in each component of the state vector (e.g., x, y, and z ) has on the system.

Equation (3.39) dictates that these small changes to the state vector components at

epoch be made at the epoch time.

Each position and velocity T element was computed in the simulation by first

propagating the state vector components forward in time to each observation time.

The trajectory that resulted from this propagation was known as the nominal trajec-

tory.

For each component of the state vector, the nominal state trajectory was per-

turbed by some value then propagated again. This trajectory was called the perturbed

trajectory. For the state components x, y, and z, which were in units of meters, a

perturbation of .05 m was chosen. For the state components ẋ, ẏ, and ż, which were

expressed in units of m/s, a perturbation of .001 m/s was chosen. The perturbation

values were empirically chosen to be large enough that an actual change in the trajec-

tory could be calculated for the partial derivative, but small enough that the linearity

assumption of the partial derivative was still valid.
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Therefore, each numerical partial derivative was represented as one of two equa-

tions depending on if the state component was a position or velocity component:

∂observations

∂X0

=
Obsperturbed −Obsnominal

δposition
(3.45)

∂observations

∂X0

=
Obsperturbed −Obsnominal

δvelocity
(3.46)

where

Obs is either a TDOA or pseudorange

δposition is equal to .05 m. It represents the small change in position used to

calculate the partial derivative.

δvelocity is equal to .001 m/s. It represents the small change in velocity used

to calculate the partial derivative.

The nominal and perturbed trajectories were propagated with no simulated

random errors. The ε terms from Equations (3.41) and (3.42), which represented the

observations’ random errors, were estimated by the filter.

3.5.2.1 Pseudorange Partial Derivatives. Each pseudorange contained

a single partial derivative corresponding to the one satellite involved in the mea-

surement whose states were being estimated. Figure 3.7 depicts the calculation of

Equations (3.45) and (3.46) for pseudorange observations. As described above, the

simulation only calculated the partial derivatives of the satellite involved in each

pseudorange, because only the satellite’s states were being estimated by the filter.

Contrary to the position and velocity components, the partial derivatives cal-

culated with respect to the clock components of the state vector were computed

analytically for pseudorange contributions to the T matrix. Using Equation (3.41),

the partial derivatives of the H matrix for the bias and drift were calculated:

∂G(x)

∂bias
= −1 (3.47)
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∂G(x)

∂drift
= 0 (3.48)

Using the two-state (bias and drift) derivative of the Φ matrix in Equation (3.16),

the clock components of T were analytically computed using Equation (2.10)

T =
[
−1 0

]

1 τ

0 1




=
[
−1 τ

]

(3.49)

where

τ = tk+1-tk, the time interval

3.5.2.2 TDOA Partial Derivatives. Each TDOA was composed of

two separate partial derivatives corresponding to the two satellites involved in the

observation whose state components were both being estimated. Figure 3.8 illustrates

the TDOA-based partial derivative of Equations (3.45) and (3.46). The TDOA partial

derivatives involved a primary and secondary satellite as shown in Figure 3.8. In this

simulation, the primary satellite was considered the satellite that received the pulsar

signal TOA before its secondary counterpart satellite. The primary satellite was

considered the reference satellite and thus all calculated TDOAs from the perspective

of the secondary satellite had opposite signs of the TDOAs that were computed from

the perspective of the primary satellite.

In Figure 3.8, satellite 1 is considered the primary receiver and satellite 2, the

secondary receiver. Conceptually, the numerical partial derivatives of satellite 1 in-

volved making successively small changes to each of satellite 1’s position and velocity

state vector components while keeping the state vector components of satellite 2 con-
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Figure 3.7: Illustration of Pseudorange Observation Numeri-
cal Partial Derivatives
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Figure 3.8: Illustration of TDOA Observation Numerical Par-
tial Derivatives
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stant. By observing the effect of satellite 1’s changes on the TDOA computation

between satellites 1 and 2 (TDOA1−2), the numerical partial derivatives for the pri-

mary receiver could be calculated.

Analogously, the secondary partial derivatives were conceptually calculated by

perturbing each of satellite 2’s position and velocity state vector components and

noting their effect on the TDOA calculations while keeping satellite 1’s state vector

constant. These partial derivatives were based on TDOA2−1 and were given a sign

opposite of the primary partial derivatives, because they are referenced from the

opposing perspective of the primary satellite.

In the simulation, the x, y, z, ẋ, ẏ, and ż components were perturbed at epoch

in accordance with Equation (3.39) then the perturbed trajectories were propagated.

Subsequently, new TDOAs between satellites 1 and 2 were calculated using state

vector information from the perturbed state vector. Finally, the TDOAs resulting

from the perturbed trajectories were differenced from the nominally (unperturbed)

calculated TDOA values for the calculation of the actual partial derivatives.

The clock partial derivatives for the TDOA-based portion of the T matrix were

calculated analytically in a manner similar to the methods described above for the

pseudoranges. Additionally, the assumption of opposite signs for the primary ver-

sus secondary partial derivatives was also used to compute the partial derivatives

of the bias and drift at epoch with respect to the TDOA’s. Using Equation (3.42),

the primary satellite partial derivatives of the H matrix for the bias and drift were

calculated:

∂G(x)

∂bias
= 1 (3.50)

∂G(x)

∂drift
= 0 (3.51)

The two-state Φ matrix was used to calculate the T matrix partials:
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T =
[
−1 0

]

1 τ

0 1




=
[
1 τ

]

(3.52)

Using the secondary satellite opposite sign assumption, the clock partial deriva-

tive components of the T matrix for satellite 2 could be calculated:

T =
[
−1 −τ

]
(3.53)

An important simplifying assumption that was made during the generation of

the T matrix is the principle of linear independence of the measurements. Figure 3.9

illustrates a possible scenario of 4 satellites involved in a set of TDOAs using 1 pulsar.

If satellite 1 was considered the primary satellite, then a set of TDOAs can be gen-

erated between satellites 1, 2, 3, and 4 (1-2, 1-3, and 1-4). All other possible TDOAs

(e.g., 2-3) were not calculated, because those observations are linear combinations of

measurements 1-2, 1-3, and 1-4. For example, TDOA2−3 could be calculated as a

linear combination of TDOA1−2 and TDOA1−3. Essentially these TDOAs offered no

new information that could not already be derived from the first set of TDOAs. Only

the set of linearly independent measurements were incorporated into the T matrix.

In the event that satellite 1 did not detect a particular pulsar, the TDOA calculation

algorithm would use the next satellite (satellite 2) as the primary and begin the same

calculations.

3.5.3 W Matrix. Using the ε terms of Equation (3.41) and (3.42), the

weighting matrix for the batch filter was computed. First, the measurement noise

covariance matrix, R, was calculated. To calculate the elements of R, an assumption

was made that both the pseudorange observations and TDOAs were all independent
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Figure 3.9: Redundant TDOA Observations Table (4 satellite
case). TDOAs 2-3, 2-4, and 3-4 are redundant
since TDOAs 1-2, 1-3, and 1-4 are available.

measurements. For the pseudoranges, measurement independence makes intuitive

sense because one pseudorange measurement between a satellite and ground station

cannot be affected by a second satellite or ground station. In the case of the TDOAs,

it was assumed in the simulation that for every TDOA calculated, independent TOAs

to a given pulsar were calculated by each satellite. Furthermore, for each individual

satellite, it was assumed that the satellite did not carry the same TOA measurement

error for any given observation. Instead, it was assumed that a satellite generated a

new TOA measurement error for each TDOA. Using these observation assumptions,

each element of the R matrix was computed using the following equations:

Ri,i = E
[
εε

]
= σ2

TDOA,PR (3.54)

σTDOA = c
√

(σ2
TOA1 + σ2

TOA2) (3.55)

σPR = c
√

(σ2
tropo + σ2

multipath + σ2
noise) (3.56)
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where

σTDOA is the variance of the TDOA measurement noise

σPR is the variance of the pseudorange measurement noise

c is the speed of light

Measurement independence means that there is no correlation of measurement

errors and thus R was a diagonal matrix. The R matrix took the form

R =


RTDOA 0

0 RPR


 (3.57)

where

RTDOA =




σTDOA1 0
. . .

0 σTDOAN


 (3.58)

RPR =




σPR1 0
. . .

0 σPRN


 (3.59)

where

RTDOA represents the matrix of diagonal σ2
TDOA terms

RPR represents the matrix of diagonal σ2
PR terms

σTDOA1...N
represents a block of diagonal terms equal to the number of TDOA

measurements for the time interval

σPR1...N
represents a block of diagonal terms equal to the number of pseudorange

measurements for the time interval

0 represents a block of elements equal to 0 above and below the matrix diagonal

The weighting matrix W was simply calculated by inverting the R matrix. Thus

the diagonal elements of R were inverted:
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W = R−1 =


R−1

TDOA 0

0 R−1
PR


 (3.60)

where

R−1
TDOA =




1
σ2

TDOA1

0

. . .

0 1
σ2

TDOAN




(3.61)

R−1
PR =




1
σ2

PR1

0

. . .

0 1
σ2

PRN




(3.62)

Note that in reality, there is a correlation between TDOA measurements at

a given epoch, because they all share the same base satellite. This will lead to

cross-correlation terms in the covariance matrix. These cross-correlations were not

accounted for in the current simulation. Implementing them is a recommendation for

future work.

3.5.4 Residuals Matrix. The residuals matrix was calculated by subtracting

all of the operational pseudorange and TDOA observations garnered from A2 and A3

respectively from the corresponding calculated pseudorange and TDOA quantities

from the G(x ) terms in Equations (3.41) and (3.42).
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r =




TDOAcalc1− TDOAobs1

TDOAcalc2− TDOAobs2
...

TDOAcalcN − TDOAobsN

PRcalc1− PRobs1

PRcalc2− PRobs2
...

PRcalcN − PRobsN




(3.63)

Using the residuals matrix as the foundation, the convergence of the batch filter

was determined using the following equations taken from [50]:

RMS =

√
rT Wr

N
(3.64)

∣∣∣ RMSold −RMSnew

∣∣∣ ≤ ε (3.65)

where

r is the residuals matrix

W is the weighting matrix

N is equal to the number of total observations in the time interval

ε is the tolerance level representing the successive changes of the RMS of the

residuals from one iteration to the next (a value of .9 was used)

RMS old is the root mean square of the residuals matrix from the previous iter-

ation

RMSnew is the root mean square of the residuals matrix in the current iteration

In this simulation, the batch filter stopped its iterations when the RMS of the

residuals stopped changing within a tolerance (ε) of .9 m. The value of ε was chosen as

an engineering tradeoff between reasonable algorithm processing time and accuracy.
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3.6 Evaluate Results(A5)

The A5 block took the output of A1, the truth model epoch state vectors for

the GPS constellation, and compared them with the estimated epoch state vector

outputs of block A4, the batch filter. Various metrics such as the SISRE, were used

to determine how well the batch filter’s estimate of the state vectors agreed with the

propagated truth model state vectors. Block A5 used a series of simulation test cases,

called scenarios, as tools to determine results such as the SISRE. An analysis of this

comparative study will be covered in Chapter 4.

3.7 Summary

This chapter mathematically developed the concepts fundamental to the simula-

tion algorithms. The architecture of the simulation, which was divided into 5 function

blocks, was broken down and discussed function-by-function. Any modeling assump-

tions and approximations made were introduced according to their corresponding

function block. Chapter 4 will present the results and analysis of this simulation.
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IV. TDOA Results and Analysis

This chapter presents and analyzes the results from scenarios used to answer the

questions posed by the research objectives. The results of each scenario run, as

they apply to the research objectives, will be presented in the following sections.

The introduction, presented in Section 4.1, will first discuss the specific SISRE

metrics used to quantify the accuracy of the state vector estimation for each scenario

run. Additionally, the concept of state vector estimate covariance will be introduced.

Next, the initial conditions used to set up each scenario as well as the modeling as-

sumptions general to all scenarios will then be discussed. Finally, the general structure

of a typical scenario will be described in detail. Section 4.2 will present the techniques

used to validate the proper operation and accuracy of the batch filter.

Analysis for this research will be encompassed in four separate tests. Section 4.3

will present the results and analysis for Test 1 whose purpose will be to determine

if pulsar-based TDOAs will generally help to decrease the pseudorange(PR)-based

SISREs for the GPS constellation. Section 4.4 will present the results and analysis of

Test 2 wherein a parametric study will be conducted to determine if the number of

pulsars used to create TDOA observations can significantly affect SISRE levels. Sec-

tion 4.5 will present the results and analysis of Test 3 whose goal will be to determine

if TDOAs can help maintain SISRE levels in the event of a ground station outage.

Finally, Section 4.6 will present the results and analysis of Test 4 whose goal will be

to determine if there is an optimal geometry for TDOA receivers to be situated in

order to lower SISRE levels of the GPS constellation.

4.1 Introduction

4.1.1 SISRE Metrics. Central to the analysis of this research was the

SISRE metric. Conceptually presented in Chapter 2, the SISRE was used in 2 forms

to determine the batch filter’s ability to estimate clock and ephemeris errors. This

research used two forms of SISRE to conduct scenario analysis. The first variant of
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SISRE, called SISREsatellite, quantified the errors of each individual satellite separate

from its constellation counterparts.

SISREsatellite =

√
(R− CLK)2 +

1

49
(A2 + C2) (4.1)

The second form of SISRE used for the analysis was called SISREconstellation.

SISREconstellation quantified the SISRE errors of all satellites together in a RMS sense.

SISREconstellation was used to yield an overall average measure of how well TDOAs

improved the estimation of the satellite state vectors.

SISREconstellation =

√
SISRE2

satellite1 + SISRE2
satellite2 + · · ·+ SISRE2

satelliteN

N
(4.2)

where N is the number of satellites in the constellation.

It is important to note that the SISRE values presented in subsequent sections

were generated using a simulation that incorporated no model errors in the satellite

dynamics or batch filter. Therefore, all SISRE values were inherently lower than

the operational SISRE’s that would be calculated by the MCS in Colorado Springs,

CO. However, this research is primarily concerned with relative SISRE values and

not absolute ones. The analysis presented here will determine how much a SISRE

value that is generated using only pseudorange observations can be lowered if TDOAs

are introduced into the estimation problem. The analysis depended less on how well

the SISREs generated by the simulation agreed with operational data and more on

quantification of the decrease in relative SISRE.

4.1.2 Covariance of the Estimate at Epoch . The state covariance matrix,

P, introduced in Section 2.3 by Equations (2.11) and (2.12), was calculated in this

simulation for the estimate of the state at epoch. In order to directly relate the

covariance of the estimate in the ECI frame for several of the scenarios, the ECEF-
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based covariance, PECEF , was transformed to the ECI frame. For each satellite, a

4-state covariance matrix was calculated. The four states included the position vector

(x, y, z ) and the clock bias. PECEF is expressed as

PECEF =




σ2
x σx,y σx,z σx,bias

σy,x σ2
y σy,z σy,bias

σz,x σz,y σ2
z σz,bias

σbias,x σbias,y σbias,z σ2
bias




(4.3)

where

the σ2
n terms represent the variances of the estimate; n = x, y, z, bias

the σn,m terms represent the covariances of the estimate; m = x, y, z, bias

In order to express the covariance in the ECI frame, the ECEF states, along

with the clock bias, must be rotated for each satellite using the equation


XECI

XCLK


 =


CECI

ECEF 0

0 1





XECEF

XCLK


 (4.4)

where

XECI represents the state vector expressed in the ECI frame

XCLK represents the clock bias

XECEF represents the state vector expressed in the ECEF frame

CECI
ECEF represents the direction cosine matrix that transforms the state compo-

nents of the ECEF frame to the ECI frame

Correspondingly, the covariance expressed in the ECEF frame can be trans-

formed into the ECI frame

PECI = CPECEF CT (4.5)
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where

C =


 CECI

ECEF 0

0 1


 (4.6)

where C represents the combined direction cosine matrix that transforms both the

ECEF-based components and the clock component to the ECI frame.

Finally, PECI can be written as

PECI =




σ2
X σX,Y σX,Z σX,bias

σY,X σ2
Y σY,Z σY,bias

σZ,X σZ,Y σ2
Z σZ,bias

σbias,X σbias,Y σbias,Z σ2
bias




(4.7)

where

X is the ECI based X -component of the covariance matrix

Y is the ECI based Y -component of the covariance matrix

Z is the ECI based Z -component covariance matrix

For each satellite, the covariance of the estimate, σsatellite, was calculated by

computing the trace (sum of the diagonal elements) of each satellite’s PECEF matrix.

σsatellite =
√

Trace(PECEF ) (4.8)

It is recognized that the eigenvalues of the covariance matrix, P, are invariant

to the coordinate frame, and therefore the covariance of the estimate is equivalent in

the ECI and ECEF frames. However, the P matrices were transformed to the ECI

frame in order to relate them more directly with the ECI positions of the pulsars for

certain scenarios discussed below.

Using the individual σsatellite values, a constellation covariance estimate, σconstellation,

was also computed by calculating the RMS of all 29 σsatellite values.
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σconstellation =

√
σ2

satellite1 + σ2
satellite2 + · · ·+ σ2

satelliteN

N
(4.9)

where N is the number of satellites in the constellation.

Throughout this chapter, the σconstellation values will be compared to the re-

sults of each test introduced above. The covariance estimates are independent of any

specific random errors that were introduced into the measurements of each scenario.

Therefore an attempt will be made to validate the results of specific scenarios by illus-

trating that the covariances should generally behave (i.e., shrink or grow) in a manner

consistent to the results of a set of scenarios. That is, if a set of scenarios show that

the SISRE will decrease or increase, then the comparison of the covariance matrices

should also show the same trend. Note that the SISRE results also have a different

“weighting” of the error components than σsatellite, since the radial and clock errors

are more significant than the along-track or cross-track. As a result, a direct compar-

ison between SISREconstellation and σconstellation is not appropriate. Nevertheless, it is

expected that the trends should be consistent.

4.1.3 Initial Conditions. Before every scenario run, the simulation imple-

mented a set of initial conditions that remained constant for every scenario. The epoch

time of the GPS constellation was determined using the initial satellite ephemerides

(see Appendix A) gleaned from the GPS Yuma Almanac [23] for each satellite. The

epoch time used to initialize every scenario is listed below:

• Year = 2004

• Month = 08

• Day = 14

• Hours = 19

• Minutes = 50

• Seconds = 24
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Using the above mentioned epoch time, each scenario run was propagated for

the same duration and used the same time step. The propagation initial conditions

are listed below.

• tinitial = 0 seconds

• tfinal = 86400 seconds (1 day)

• time step = 900 seconds (15 minutes)

4.1.4 Scenario Overview. This section will describe how a typical scenario

was set up to run in order to yield SISRE results for analysis. A scenario matrix will

be presented which will describe the scenarios used in this simulation. Additionally,

the use of the Matlabr pseudo-random number generator to compare large numbers

of scenarios will be discussed.

4.1.4.1 Scenario Structure. The architecture of each scenario was

a function of the A1 - A5 algorithm blocks presented in Section 3.1.1. For each

scenario the architecture of block A1, the truth model was exactly the same. The

GPS constellation always consisted of 29 satellites. The initial conditions, common

to each scenario and described in Section 4.1.3, were all set in A1.

In the block A2 algorithm, a boolean flag existed which allowed pseudorange

(PR) observations to be turned on and off for each scenario. When PRs were turned

on, the PR error parameters (as described in Section 3.3.2) could also be set. The

values of these 1σ errors (i.e., troposphere, multipath, receiver error) were defined in

Chapter 3.

Analogously, in block A3, a boolean flag was designed to allow TDOAs to be

turned on and off. If TDOAs were activated for a scenario, the TDOA measurement

error parameter (as described in Section 3.4.2) could also be turned on and off.

After the initial flags were set and various parameter values were selected, the

number of pulsars had to be selected if TDOAs were being incorporated into the
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scenario run. Pulsars that were not desired for use in the simulation were manually

set to a very high σTOA level in order to de-weight their batch filter contributions, to

a negligible level, for all TDOA measurements. The unused pulsars were not com-

pletely removed from the simulation, because that would have changed the sequencing

of random numbers that were applied to the various components of the system, as

described in the following section.

4.1.4.2 Nominal TDOA Scenario. The majority of the scenarios that

incorporated TDOAs were based on a nominal TDOA scenario. This section will

present the parameters and associated assumptions of the nominal TDOA scenario.

The most important characteristic of pulsars used in the computation of TDOAs

was their intrinsic time of arrival uncertainty, σTOA. Equation (2.20), which charac-

terized the pulsar timing error used in the simulation, is restated below for clarity.

The components of Equation (4.10) have been previously defined in Section 2.5.4.

σTOA ≈
√

HWHM2 + σ2
γ

S/
√

S + B
(4.10)

Equation (4.10) was instrumental in formulating a nominal TDOA scenario.

The known pulsars have a HWHM that can be approximated using a value that

ranges from 2% to 20% of their pulse period. The HWHM range of values comes

from the results of empirical analysis conducted at the University of Maryland [43].

In reality, as stated in Section 2.5.4, each pulsar has a naturally occurring and unique

HWHM value that can be measured and used in Equation (4.10). However, during

the course of research, it was found that the x-ray band HWHM for each pulsar

that was listed in Table 3.4 was not readily available. The lack of pulsar pulse-width

knowledge is a result of the fact that measuring the width of a pulsar pulse is not an

intrinsically useful metric in pulsar physics research [38]. Additionally, the radio band

based HWHM values that have been determined for each pulsar do not necessarily

correlate the the HWHM measurements in the x-ray waveband [38]. Consequently,
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a nominal value 10% was assigned to each pulsar in order to yield overall reasonable

σTOA values for each pulsar.

As stated in Section 2.5.4, B represents the total number of all other photon

events in an observation including any unpulsed emission from the pulsar source, the

diffuse x-ray background, and the particle-induced background counts that arrive at

the detector. Essentially, B accounts for all extraneous photon events that can corrupt

a detector’s measurement of the pulsar’s pulsed x-ray emissions. A value of .005

was chosen based on the empirical research done at the Naval Research Laboratory

(NRL) [38]. The detector σγ value of 1µs was also gleaned via research done at

NRL [38].

It was observed that the detector area (Aeff ) of current x-ray detectors ranged

from approximately 1000 cm2 to 6500 cm2. Based on this research and discussions

with the NRL, a nominal detector value of 3100 cm2 was chosen [25, 38, 39]. A 3100

cm2 detector would measure approximately 1.9 ft on one side. The frame of a Block

IIR GPS satellite is a cube that measures approximately 6 ft on a side [33]. Therefore

it was decided that 3100 cm2 of effective area would be feasible for a GPS satellite.

Finally, the detector integration time (∆t) of 103 seconds was chosen based on the

specifications of previous x-ray observatories [25,38,39,54].

In choosing detector specifications that will fulfill the requirements of our nom-

inal TDOA scenario, it is important to note that the purpose of this research is not

to conduct an engineering study concerning the optimal characteristics of an x-ray

detector. The components of σTOA listed in Equation (4.10) are simply a means to

vary the σTOA potential of each pulsar. Therefore, in the analysis that follows, sev-

eral parameters (e.g., HWHM, area, integration time) will be varied in order to yield

σTOA values of different magnitudes for each pulsar. The analysis of this chapter will

focus on associating the trends of SISRE with the values of σTOA in a given scenario.

Table 4.1 lists the nominal σTOA values, expressed in meters, for each pulsar. σTOA
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varies for each pulsar, because the flux values (see Table 3.4), characteristic of each

pulsar, directly affect the ‘S ’ term in Equation (4.10) giving each pulsar its own σTOA.

Table 4.1: Nominal Pulsar σTOA

Pulsar σTOA (m)
B0531+21 (Crab Pulsar) 88.5

J0437-4715 6782.0
B1821-24 2764.7

J2124-3358 2.906E4
J1012+5307 2.027E5
J0218+4232 1.314E4
J0751+1807 3.919E4
B1937+21 4.149E4
B1257+12 2.729E5
B1820-30A 42.22
B1620-26 5.343E4
J2322+20 3.858E5
J2019+24 1.06E5

J0030+0451 1.873E4
J1024-0719 2.81E5
J1744-1134 3.048E5

4.1.4.3 Simulation Scenarios. Based on the aforementioned parameter

settings and flags, groups of scenarios were created to answer the questions posed

by the research objectives. Table 4.2 displays the scenarios created for the SISRE

experiments. Note that the third column displays the order of accuracy, in meters, of

the pulsar with highest timing accuracy (i.e., lowest σTOA) expressed in meters. Each

scenario will be described in detail in one of the following sections.

4.1.4.4 Application of the Matlabr Pseudo-random Number Generator.

An important aspect of the analysis and creation of each scenario was the applica-

tion of Matlabr’s pseudo-random number generator to simulate random processes.

The pseudo-random number generator uses an algorithm that produces approximately

random numbers. In reality, given an initial value (called the ‘random seed’), the al-

gorithm will produce the same series of numbers every time it is implemented [8].
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Table 4.2: Simulation Scenarios

Scenario Number Description σTOA Accuracy For
Most Accurate Pulsar (m)

1a PR observations only -
1b PR + TDOAs (16 pulsars) 42.2
1c PR + TDOAs (16 pulsars) 0.1
1d PR + TDOAs (2 pulsars) 13.4
1e PR + TDOAs (2 pulsars) 4.2
1f PR + TDOAs (2 pulsars) 1.3
1g PR + TDOAs (2 pulsars) 0.4
2a PR + TDOAs (16 pulsars) 13.4
2b PR + TDOAs (8 pulsars) 13.4
2c PR + TDOAs (4 pulsars) 13.4
2d PR + TDOAs (2 pulsars) 13.4
2e PR + TDOAs (1 pulsar) 13.4
2f PR + TDOAs (1 pulsar) 1.1
3a PR outage (22 hours) - no TDOAs -
3b PR outage (20 hours) - no TDOAs -
3c PR outage (18 hours) - no TDOAs -
3d PR outage (15 hours) - no TDOAs -
3e PR outage (10 hours) - no TDOAs -
3f PR outage (22 hours) + TDOAs (16 pulsars) 42.2
3g PR outage (20 hours) + TDOAs (16 pulsars) 42.2
3h PR outage (18 hours) + TDOAs (16 pulsars) 42.2
3i PR outage (15 hours) + TDOAs (16 pulsars) 42.2
3j PR outage (10 hours) + TDOAs (16 pulsars) 42.2
3k PR outage (22 hours) + TDOAs (1 pulsar) 1.8
3l PR outage (20 hours) + TDOAs (1 pulsar) 1.8
3m PR outage (18 hours)+ TDOAs (1 pulsar) 1.8
3n PR outage (15 hours) + TDOAs (1 pulsar) 1.8
3o PR outage (10 hours) + TDOAs (1 pulsar) 1.8
4a Variable Geometry

- 3 planar transmitters at 5 deg apart 0.1
4b Variable Geometry

- 3 planar transmitters at 120 deg apart 0.1
4c Variable Geometry

- 3 orthogonal transmitters 0.1
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The simulation used this property of Matlabr’s pseudo-random number algorithm to

compare the results of separate scenario runs. By assigning sets of scenarios the same

random seed value, the SISRE values between different scenarios could be related to

one another. A common random seed value allowed each scenario to implement the

random processes to realistically simulate measurement noise, clock walk, etc. while

at the same time adhering to a baseline that allowed all scenarios to be fundamen-

tally related and thus comparable. Without a common random number seed, any

given scenario could not be replicated. Additionally any two scenarios in a given

set could not be compared in a meaningful way, because the inherent randomness

of each scenario may change the ultimate SISRE values, resulting in unpredictably

varying results every time they were run. Without the ability to control the random

number algorithm, no analysis could be done between 2 scenarios, because the SISRE

magnitude could not be repeated.

As an example, suppose two scenarios with different parameter values were

run multiple times in order to make a comparison in their SISREconstellation values.

Without the same random seed in each scenario, the respective SISRE results will

vary unpredictably in such a manner that it would be impossible to interpret the

SISREsconstellation – are the values the result of a phenomenon in a particular scenario

or are they just the result of random effects? The SISREconstellation for the first sce-

nario may be lower than the second one for the first 3 trials. However, during the

next 5 trials, scenario 2 may have a lower SISREconstellation because of the intrinsic

randomness built into the scenarios. Using the same random seed allows the random-

ness of two disparate scenarios to be normalized so that their results can be compared

on a uniform scale.

In this simulation, 2 different types of pseudo-random number algorithms were

used. The primary algorithm used in the simulation was the randn function which

generated a series of normally distributed random numbers and the rand function

which generated uniformly distributed random numbers. The randn function was used

to model the random walk of the satellite and ground station clocks, and measurement
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noise in the PRs and TDOAs. Additionally randn was used to corrupt the batch filter’s

initial guess of the GPS satellites’ true state vectors so that it was offset from the A1

generated truth model. A second random generator, rand, was used to randomly pick

initial af 0 and af 1 terms for the ground station clocks because of the unavailability

of their true operational values.

For most scenarios, four instances of the exact same scenario were run with

different random seeds. Scenarios run with random seeds of 100 were classified as

the 10 series (e.g., 1, 2, 3...). Scenarios run with a random seed of 10,000 were

classified as the 100 series (e.g., 101, 102, 103,...). Scenarios run with random seeds

of 17 were classified as the 200 series (e.g., 201, 202, 203,...). Finally, scenarios run

with random seeds of 1977 were classified as the 300 series (e.g., 301, 302, 303,...).

Therefore, scenarios across random seeds were comparable based on their assigned

number. For example, scenarios 1, 101, 201, and 301 would all represent the same

scenario structure type but would have different output values because of the different

random seed numbers used. In order to get an average value over all the scenario

variants, a RMS value was calculated for each scenario type.

For every individual scenario, a SISREsatellite value was calculated for all 29 satel-

lites in the constellation. Additionally, each scenario computed a SISREconstellation

value made up of an average (RMS) of all 29 SISREsatellite values. For every sce-

nario type, a Total RMS SISREsatellite value was calculated as well as a Total RMS

SISREconstellation number.

To illustrate this methodology, scenarios 1, 101, 201, and 301 will be used as

an example. For each scenario, 29 SISREsatellite values were calculated as well as

1 SISREconstellation value. Next, using each satellite’s 4 total SISREsatellite metric

values a Total RMS SISREsatellite number was computed. Analogously, in each of

the 4 scenarios, a SISREconstellation number was calculated. Taking the average of

these 4 numbers, a Total RMS SISREconstellation value was calculated for the scenario
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type. For the analysis that follows, naming of a scenario (e.g., scenario 1) implies the

combination of all four of the random seed results, unless specifically stated otherwise.

4.2 Batch Filter Functionality Check

Before any scenarios were run through the simulation, the batch filter was tested

by adding an arbitrary constant offset to the initial state estimate at epoch. If the

measurement errors are subsequently turned off, any differences between the propa-

gated truth states (i.e., the observations) and the corresponding calculated states will

be due solely to this initial offset.

Implementing the method mentioned above, an offset of 25 meters was added to

each position component (x, y, z ) of the initial truth ECEF state as well as the clock

bias. This state represented an initial guess, or perhaps the last known estimate of the

satellite’s position and bias components, which were to be updated/corrected by the

filter. In spite of this relatively large offset, the batch filter successfully corrected this

initial estimate to within 10−7 m of the corresponding truth values in each positional

component.

A similar test was performed by introducing an arbitrary offset in the velocity

components (ẋ, ẏ, ż) of the initial truth state as well as in the clock drift. The

satellite trajectories were much more sensitive to changes in velocity than to changes

in position. Thus, if these offsets were too large, the residuals (i.e., the differences

between the truth or observed quantities and the calculated quantities) could have

become sufficiently large which would have caused the filter to diverge. Hence, the

offsets used were somewhat smaller for this test (5 cm/sec) and resulted in about 4

km of positional error in each component after 24 hours of propagation (2 orbits).

Using this offset, the batch filter again corrected initial state estimate to within 10−7

m of the corresponding truth values in each velocity/clock drift component.
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4.3 Test 1: Qualify the Improvement of TDOAs from Pulsars on GPS

SISRE

Test 1 attempted to quantify, through two separate experiments, the overall

impact of using TDOAs to decrease the SISRE in a PR-only GPS system. Scenario 1,

listed in Table 4.2, simulated an operational GPS system without the supplemental

TDOA observations. This scenario served as a baseline reference for the all of the PR

+ TDOA scenarios used in this test. Using the four different random seed variants of

scenario 1 (i.e., 1, 101, 201, 301), the SISREsatellite values for each satellite were calcu-

lated. Figures 4.1 – 4.4 demonstrate the variability of SISREsatellite values depending

on the random seed used.
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Figure 4.1: PR-only SISREsatellite Values (Random Seed =
100)

Examining each figure, the variability of each PRN’s (satellite) SISREsatellite

value is made clear. This variability from one random seed scenario to the next

makes it difficult to judge overall PRN performance. It was therefore determined

that individual scenario SISREsatellite values could not be used, because no meaningful

comparison could be made to other scenario types (i.e., which SISREsatellite value

would be used in the comparison to other scenario types?). Thus, in any analysis

involving individual satellites that follows, only the Total RMS SISREsatellite value
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Figure 4.2: PR-only SISREsatellite Values (Random Seed =
10000)
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Figure 4.3: PR-only SISREsatellite Values (Random Seed =
17)

(referred hereafter as RMS SISREsatellite), which represents each satellite’s average

SISREsatellite value, will be referenced.

4.3.1 Evaluating the Effect of Adding Nominal TDOA Measurements. The

first experiment of Test 1 compared the SISRE values of a PR-only (scenario 1a)

scenario to that of a PR + nominal TDOA (scenario 1b) scenario. In scenario 1b, 16

pulsars were introduced into the simulation, creating 42,016 additional measurements
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Figure 4.4: PR-only SISREsatellite Values (Random Seed =
1977)

in the form of TDOA observations. The nominal σTOA values from Table 4.1 were

used.

First, the RMS SISREsatellite values for scenarios 1a and 1b were plotted and

compared. Figure 4.5 compares the average RMS SISREsatellite values for each satel-

lite. The data shows that overall, 12 of the 29 satellites had a RMS SISREsatellite that

was higher after TDOAs were introduced to the filter.

To explain the apparent satellite-by-satellite SISRE degradation for those 12

satellites, state vector and SISRE component (radial, along-track, cross-track) com-

parisons were made in an attempt to correlate the decreased accuracy with actual

differences (errors) between the batch filter’s estimate of certain parameters and the

truth model’s actual values for these parameters. The “difference” or “error” was

always defined as the (estimate - truth).

The first parameter comparison involved calculating the actual spatial distance

between the estimated state at epoch and the truth state at epoch. Using the distance

formula, a 3-dimensional physical distance between the estimated and true epoch

states was calculated. In essence, the distance between the estimated state and truth

state can be considered the position error for each satellite (3-D Position Error(RMS)).

Figure 4.6 shows these differences between scenarios 1a and 1b. This indicates the
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Figure 4.5: RMS SISREsatellite Comparison Between PR-only
(Scenario 1a) and PR + Nominal TDOA (Sce-
nario 1b)

random nature of the results and the need to look at a metric that is more general

than the satellite-by-satellite RMS SISREsatellite.

Comparing the satellites that had overall degrading SISREs in Figure 4.5 with

those in Figure 4.6 did not appear to present a one-to-one correlation. In other words,

those PRN’s that had RMS SISREsatellite values that became worse in scenario 1b did

not necessarily have a worse position error in scenario 1b when compared to their

position error in scenario 1a.

Next, the errors in the SISRE components were compared. Figures 4.7 – 4.10

used the SISRE-based frame to display each satellite’s three position component errors

and clock bias error (measured in meters).

The results from Figures 4.7 – 4.10 also did not show a direct correlation to RMS

SISREsatellite degradation in scenario 1b for selected PRN’s when compared to scenario

1a.
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Figure 4.6: Satellite RMS 3-D Position Error

Figure 4.7: RMS Error in Radial Axis

Ultimately, Figures 4.5 – 4.10 indicate that there is great variability in SISRE

performance on an individual satellite level. The effects of RMS SISREsatellite getting

worse with the introduction of TDOAs cannot be directly attributed to the batch
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Figure 4.8: RMS Error in Along-Track Axis

Figure 4.9: RMS Error in Cross-Track Axis

filter’s estimate of (x, y, z ) position error, along-track error, cross-track error, radial

error, or bias error on an individual basis.
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Figure 4.10: RMS Error in Clock Bias

The degrading of RMS SISREsatellite between scenarios 1a and 1b can most

likely be attributed to the variable nature of the SISREsatellite metric. One possible

explanation for the SISREsatellite variability has to do with the statistics of using

different random seeds for each scenario. It is plausible that in using the SISREsatellite

metric, the random errors that pervade each scenario are not being averaged out with

the number of samples that were used (4 different random seeds per scenario).

The variability between RMS SISREsatellite values necessitated that the Total

RMS SISREconstellation (referred hereafter as the RMS SISREconstellation) metric be uti-

lized over RMS SISREsatellite. A meaningful assessment of SISRE improvement could

not be made using RMS SISREsatellite and therefore, an attempt was made to smooth

the random effects of each random seed by using the RMS SISREconstellation. The

SISREconstellation was useful because it indicated the overall average of the improve-

ment of SISRE on a constellation scale.

Table 4.3 shows the RMS errors in position, along-track, cross-track, radial and

bias for scenarios 1a and 1b, the RMS of SISREconstellation, the σconstellation values along
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with the overall percent improvement of scenario 1b over scenario 1a for each of these

measurements.

Table 4.3: Performance Comparison Between PR-only (Sce-
nario 1a) and PR + Nominal TDOAs (Scenario
1b)

PR-only PR + Nominal TDOA % Improvement
(Scenario 1a) (Scenario 1b)

3-D Position
Error (RMS) 2.031 m 2.031 m 0.00

3-state σconstellation 1.987 m 1.974 m .65
Along-Track Error(RMS) 1.372 m 1.391 m -1.40
Cross-Track Error (RMS) 1.293 m 1.282 m 0.89

Radial Error (RMS) 0.753 m 0.738 m 2.07
Clock Bias Error (RMS) 0.461 m 0.460 m 0.31
RMS of SISREconstellation 0.963 m 0.953 m 1.03

Results from Table 4.3 show that there was no significant improvement in the

position error between scenario 1a and 1b. To verify this result, a three-state (x, y,

z ) covariance, σconstellation (also shown in Table 4.3), was calculated for both scenar-

ios. The σconstellation values above appear to indicate that indeed TDOAs do help to

decrease the position error of the GPS constellation as a whole.

Theoretically, the RMS position errors and the σconstellation covariance values for

scenarios 1a and 1b should be closely aligned. In a zero mean sample of data, there

is a relationship between the RMS of the data and its corresponding standard devi-

ation. Therefore, the RMS based position error should approximate the three-state

covariance, σconstellation, which is a standard deviation. Indeed Table 4.3 illustrates

that each σconstellation is similar in magnitude to the 3-D RMS Position Error which

verifies the theory that the RMS and standard deviation of a sample of data should

approximate each other.

Additionally, Table 4.3 shows that, as a constellation, the radial error improved

the most and AT error degraded slightly. One possible explanation for the radial

error improvement could be that the augmented observation geometry provided by
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the addition of TDOAs has given the batch filter more information to solve for the

error that is most known by the GPS system already. In the operational GPS system,

the radial error is relatively low (compared to the AT and XT errors) because the

pseudorange observations measure the distance to the GPS satellites from the Earth

in the radial direction. Additionally, the radial distance of each GPS satellite is well

known because the orbital period of each satellite is a function of the radial distance

from the center of the Earth. It is possible that the TDOAs have enabled the filter

to more accurately solve for an error that is well known already. It is unknown why

the AT error became worse with the addition of TDOAs in the batch filter.

Finally, the overall RMS SISREconstellation was calculated for both scenarios 1a

and 1b using each scenarios’s four separate randomized scenario variants. It was

expected that comparing these two values would indicate if, overall, TDOAs would

aid in decreasing SISRE levels in the GPS constellation. Table 4.3 compares the

RMS SISREconstellation of scenario 1a with scenario 1b. The results indicated that

TDOA’s can very slightly decrease the SISRE levels in a constellation of satellites

whose positions are determined using only pseudorange observations. The percent

improvement of scenario 1b over scenario 1a was approximately 1.03%.

One possible explanation for the improvement is the fact that with the addition

of approximately 40,000 TDOA observations, the batch filter has more data to perform

the least squares estimate and thus, can perform the estimate more accurately. The

reason for the marginal improvement of scenario 1b over scenario 1a may be attributed

to the overall lower accuracy of the TDOAs with respect to the PR observations. The

pulsars had TDOA measurements that were, at best, accurate to 42 m. In contrast,

PR measurements were accurate to approximately 1 m. Therefore, the filter did

not weigh the TDOA measurements equally with the pseudoranges. Based on the

comparison between the PR-only and PR + TDOA (nominal) scenarios, it can be

asserted that adding 16 pulsars whose timing accuracies are equal to or worse than 40

m will only marginally improve the estimates of an operational PR-only GPS system.
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4.3.2 Evaluating the Effect of Increasing the Accuracy of the Nominal TDOA

Measurements. The next experiment attempted to quantify the actual improvement

in SISRE that could be achieved when nominal TDOA measurements were replaced

with TDOA measurements that were orders of magnitude more accurate. The PR +

highly accurate TDOA (scenario 1c) scenario was compared to the PR-only (scenario

1a) scenario in order to analyze the effects of incorporating more accurately timed

x-ray pulses at each satellite. This comparison between scenarios 1a and 1c was then

contrasted with the previous section’s comparison of scenarios 1a and 1b (PR, PR +

nominal TDOA) to investigate the effectiveness of incorporating increased accuracy

TDOAs on the SISRE.

Table 4.4 lists the same pulsars as in Table 4.1. However, the σTOA values are

orders of magnitude lower than those in Table 4.1. Thus, each pulsar contributes

TDOA observations to the batch filter, through a more accurate detector, that are

orders of magnitude more accurate than those of the PR + nominal TDOA scenario.

Table 4.4: Highly Accurate Pulsar σTOA

Pulsar σTOA (m)
B0531+21 (Crab Pulsar) 0.177

J0437-4715 13.6
B1821-24 5.5

J2124-3358 58.1
J1012+5307 405.5
J0218+4232 26.3
J0751+1807 78.4
B1937+21 8.3
B1257+12 545.8
B1820-30A 0.08
B1620-26 107.3
J2322+20 771.8
J2019+24 212.2

J0030+0451 37.5
J1024-0719 562.1
J1744-1134 609.8
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Table 4.5 shows the RMS of SISREconstellation, errors (estimate - truth) in 3-

D position (RMS), along-track, cross-track, radial and bias for scenarios 1a and 1c.

Additionally, the σconstellation values along with the overall percent improvement of

scenario 1c over scenario 1a for each of these measurements.

Comparing the RMS SISREconstellation values of scenario 1c and 1a shows that

overall, SISREconstellation can be significantly lowered with the introduction of increas-

ingly accurate TDOAs. Using the RMS SISREconstellation values for scenario 1a and

1c listed in Table 4.5, the average improvement of using highly accurate TDOAs

(as compared to the nominal TDOAs implemented in scenario 1b) versus only PR

observations is approximately 26%.

A comparison was also made between scenarios 1a and 1c of their 3-D position

errors and RMS SISREconstellation component errors. This comparison was analogous

to the comparison made in Table 4.3. Table 4.5 shows that indeed each error decreased

in scenario 3.

Table 4.5: Performance Comparison Between PR-only (Sce-
nario 1a) and PR + Highly Accurate TDOAs (Sce-
nario 1c)

PR-only PR + Highly Accurate % Improvement
(Scenario 1a) TDOAs (Scenario 1c)

RMS SISREconstellation 0.963 m 0.713 m 26.0
3-D Position
Error (RMS) 2.031 m 1.405 m 30.8

3-state σconstellation 1.987 m 0.203 m 89.8
Along-Track Error (RMS) 1.372 m 0.800 m 41.7
Cross-Track Error (RMS) 1.293 m 0.999 m 22.8

Radial Error (RMS) 0.753 m 0.580 m 23.0
Clock Bias Error (RMS) 0.461 m 0.363 m 21.4

Comparing the along-track error results of Table 4.5 with Table 4.3, it was

noticed that the along-track error had the most variability. In Table 4.3, results

showed that the PR + TDOA (nominal) scenario’s along-track error was slightly

degraded as compared to scenario 1a’s along-track error. With the introduction of
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highly accurate TDOAs in scenario 1c, Table 4.5 indicates an overall improvement of

almost 42%. However, the jump in along-track error (RMS) (see Table 4.3) magnitude

cannot be explained.

Using the results Table 4.5, it can be said that the introduction of highly ac-

curate TDOAs would greatly help the batch filter’s estimate of the GPS satellite po-

sitions. This assertion was further verified when the 3-state covariance, σconstellation,

was calculated for scenario 1c and compared to the σconstellation value of scenario 1a.

Table 4.5 shows that scenario 1c σconstellation, was calculated to be 0.203 m.

Compared to the σconstellation values of 1.987 m scenario 1a, it is evident that sce-

nario 1c’s highly accurate TDOAs have improved the filter’s estimation capabilities.

Furthermore, scenario 1c’s σconstellation is much lower than the σconstellation of the nom-

inal TDOA case (scenario 1b) shown in Table 4.3 corroborating the assertion that

highly accurate TDOAs represent a greater benefit to lowering the SISRE than nom-

inal TDOAs. Note that the σconstellation for scenario 1c is significantly lower than the

corresponding 3-D position error (RMS) value possibly indicating that there may be

biases in the SISRE values not evident in the σconstellation. Ideally, as stated in the

previous section, the magnitude of 3-D position error (RMS) of scenario 1c would

have approximated its σconstellation.

The reason for the dramatic SISRE improvement can be directly linked to the

increase in pulsar TOA accuracies over the nominal TOA accuracies listed in Table 4.1.

In both scenarios 1b and 1c, approximately 40,000 additional data points in the form

of TDOA observations were added to the batch filter. The important difference of

scenario 1c is that the TDOAs were, at best, three orders of magnitude better in

scenario 1c (0.08 m for PSR B1820-30A in scenario 1c versus 42.2 m in scenario

1b). Correspondingly, based on Equation (3.60), the filter assigned a larger weight

to TDOA observations. The combination of increased σTOA accuracies and higher

weighting values assigned by the batch filter in the W matrix drove SISRE values

down for scenario 1c. Essentially, the filter was able to use more accurate information

4-25



through scenario 1c, that allowed it to calculate a more accurate GPS state vector

estimate.

4.3.3 SISRE Sensitivity Analysis. A sensitivity analysis was conducted to

evaluate the impact of increasingly accurate σTOA values on RMS SISREconstellation

performance. The two previous sections illustrated an overall affect of using TDOAs

to lower SISRE. In this experiment, the accuracy of σTOA for each pulsar was pro-

gressively improved to ascertain any SISRE performance trends by artificially varying

elements of Equation (2.20). Scenarios 1d, 1e, 1f, 1g referenced in Table 4.2 were used

to implement the changes to σTOA and observe the trend in SISRE.

Figure 4.11 illustrates how RMS SISREconstellation responds to changes in σTOA.

In order to plot the SISRE behavior, the independent variable σTOA is depicted in the

figure by the σTOA of the strongest pulsar, PSR B1820-30A, which would represent a

detector’s accuracy ceiling (i.e., since PSR B1820-30A’s σTOA is the smallest out of

the pair of PSRs used, its σTOA value represents the detector’s upper accuracy limit).

Figure 4.11: Comparison of RMS SISREconstellation Perfor-
mance with Increased σTOA Accuracy
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Figure 4.11 shows that the performance of RMS SISREconstellation behaves non-

linearly as the σTOA drops in orders of magnitude. The apparent leveling trend that

appears between the σTOA of 1.335 m and 0.422 m may indicate that increasing the

accuracy of the detector after a certain point, whether through increased area or in-

creased observation time, etc., may not yield SISRE improvements that are orders

of magnitude better. It is unknown why there may be an apparent SISRE vs pulse

timing accuracy threshold.

4.4 Test 2: Quantify the Number of Pulsars Needed to Lower GPS

SISRE

With the possibilities of SISRE improvement demonstrated through scenarios

1b and 1c, the next test endeavored to determine the number of pulsars needed

to appreciably lower the GPS SISRE. Under operational conditions, the use 16 of

pulsars to create TDOA measurements may not be feasible or even possible because

of detector pointing limitations, etc. Therefore this test incrementally decreased the

number of pulsars used to create TDOA measurements. Pulsars were successively

eliminated based solely on their σTOA values. The pulsars that could create the most

accurate (i.e., lowest σTOA) TOA measurements were eliminated last.

Referencing Table 4.2, scenarios 2a, 2b, 2c, 2d, and 2e were used to incrementally

step down the number of pulsars used from 16 pulsars down to 1 pulsar. Table 4.6

lists each pulsar and its corresponding σTOA for these set of scenarios.

Table 4.7 shown below lists the RMS SISREconstellation as well as the 4-state (x,

y, z, bias) covariance, σconstellation, for each scenario in Test 2. Additionally scenario

2f, which used the single pulsar from scenario 2e with an increased σTOA accuracy, is

also displayed. However, scenario 2f will be discussed later in the section.

Table 4.7 indicates that the magnitude of the SISRE for all scenarios is driven by

the most accurately timed pulsar. The value of the SISREconstellation for the scenarios

varied marginally ranging from 0.916 m in scenario 2a ,which utilized 16 pulsars, to
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Table 4.6: Pulsar σTOA for Scenarios 2a – 2e

Pulsar σTOA (m)
B0531+21 (Crab Pulsar) 27.98

J0437-4715 2144.66
B1821-24 874.28

J2124-3358 9189.55
J1012+5307 6.41E4
J0218+4232 4155.38
J0751+1807 1.24E4
B1937+21 1312.07
B1257+12 8.63E4
B1820-30A 13.35
B1620-26 1.69E4
J2322+20 1.22E5
J2019+24 3.35E4

J0030+0451 5923.9
J1024-0719 8.89E4
J1744-1134 9.64E4

0.911 m in scenario 2e, which relied on a single pulsar. It may be possible to infer from

this experiment that using only one pulsar, which can be very accurately timed, may

be equivalent to or better than using tens of pulsars with very weak timing statistics.

Indeed there appears to be a 5% SISRE improvement between scenario 2e, using 1

pulsar, and scenario 1a (see Test 1) using only PR observations. This improvement

is greater than the 1.03% improvement of scenario 1b (PR + nominal TDOA) over

scenario 1a discussed in the previous section.

However, even scenario 2e’s SISREconstellation of 0.911 m (only millimeter level

improvement) is not much justification to augment the GPS observation matrix with

TDOA measurements when scenario 1’s PR-only SISREconstellation was 0.963 m. As

demonstrated in Section 4.3, the pulsars, even with increased accuracy, are still

weighted much less than a pseudorange observation. Therefore, it was desirable to

observe how the RMS SISREconstellation value would behave if the TDOAs received a

weighting equivalent to each pseudorange (i.e., if pulsar measurements were as accu-

rate as a pseudorange measurement). In the next experiment (scenario 2f), one pulsar
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Table 4.7: Performance Values for Scenarios 2a – 2f

Number of Pulsars RMS SISREconstellation (m) σconstellation (m)
(Scenario #)

16 (scenario 2a) 0.916 1.915
8 (scenario 2b) 0.916 1.915
4 (scenario 2c) 0.916 1.915
2 (scenario 2d) 0.916 1.915
1 (scenario 2e) 0.911 1.915

1 (Highly Accurate)
(scenario 2f) 0.681 1.056

was used and the timing accuracy of the detector was increased to a level that would

allow the batch filter to weight each TDOA with the same weight as a pseudorange

measurement. In order to accomplish this weighting, the pulsar’s σTOA was artificially

set to 1.05 m. Table 4.7 lists the SISRE characteristics of scenario 2f.

With the increased pulsar timing accuracy; scenario 2f dramatically lowered the

SISRE level from the plateau of scenarios 2a through 2e. The RMS SISREconstellation

level, in scenario 2f, improved by 25% to a level of 0.681 m. The reason for this

improvement can possibly be attributed again to the fact that through the TDOA ob-

servations, which were more accurate than previous scenarios and thus were weighted

more heavily, the filter was able to use the least squares algorithm to more accurately

adjust its estimate of truth for each satellite position and clock bias.

The results of this analysis were further verified using a comparison of the

σconstellation values for scenario 2a – 2f, also listed in Table 4.7. The σconstellation results

from Table 4.7 corroborate the results depicted in the assertions made about scenario

2f’s performance. Scenarios 2a – 2e all had approximately equivalent SISREconstellation

values because the SISREconstellation magnitude was being driven by the strongest (i.e.,

smallest σTOA) pulsar. Correspondingly, the σconstellation values for scenarios 2a –

2e were equivalent demonstrating that the filter’s ability to estimate errors in GPS

satellite position and clock bias were approximately equal. With the addition of more

accurate pulsar measurements in scenario 2f, the batch filter’s uncertainty in position

and clock error decreased, which was expected based upon the SISRE results.
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4.5 Test 3: GPS Ground Station Outage Experiment

The next experiment attempted to determine if TDOAs could support GPS in

the event that ground stations could no longer be used to obtain pseudorange obser-

vations. It was postulated before these simulations were run that TDOAs could help

sustain manageable SISRE levels in the event that pseudoranges were not present for

a limited amount of time. Three sets of scenarios (see scenarios 3a – 3o in Table 4.2)

were created to incrementally simulate total ground station blackouts for hours at

time. Scenarios 3a – 3e represented a GPS system without the benefit of TDOA

observations during a PR outage. Scenarios 3f – 3j represented a GPS system that

incorporated TDOA observations garnered from 16 pulsars using a pulsar x-ray de-

tector that was accurate to approximately 40 m (see Table 4.1). Finally, scenarios

3k – 3o represented a GPS system that utilized 1 pulsar to make TDOAs during a

PR outage. For each outage scenario, pseudoranges were generated for 1 – 5 hours

initially before the outage began. The outages lasted from 10 – 22 hours before the

pseudoranges resumed during the last interval to complete the 24 hour simulation

run.

Figure 4.12 shows the results of the simulation being run to compare outages

that only used PRs and outages that used TDOAs to sustain the observation geometry

of the GPS constellation. The results indicated that using TDOAs in the absence of

PRs for a limited amount of time may aid the OCS in keeping track of the GPS

satellites until the ground station links to the constellation could be reestablished.

To further explore this phenomenon, a feasibility study was conducted using

scenarios 3k - 3o. These scenarios duplicated the efforts of scenarios 3f - 3j in that the

scenarios divided the observations into three blocks. Block 1 began with pseudoranges

only for the first hour or more. Block 2 simulated a complete ground station outage by

denying the constellation the use of PRs. However, instead of using 16 pulsars, only 1

pulsar was used. The 1 pulsar used was PSR B0531+21 (Crab Pulsar) which is a very

well known bright pulsar in the Crab Nebula [28]. Feasibly, if GPS x-ray detectors were
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Figure 4.12: Comparison of SISREconstellation values during
GPS Ground Station Outages. The PR +
TDOA scenarios used 16 pulsars to create
TDOAs. Scenarios 3a, 3b, 3c, 3d, 3e represent
PR-only outages of 22 hrs, 20 hrs, 18 hrs, 15 hrs,
10 hrs respectively. Scenarios 3f, 3g, 3h, 3i, 3j
represent PR + TDOA outages of 22 hrs, 20 hrs,
18 hrs, 15 hrs, 10 hrs respectively.

limited to the use of one bright x-ray emitting pulsar during the TDOA observation

window, the Crab Pulsar would be a very good candidate because its characteristics

have been widely studied and therefore a detector could be optimally designed to

specifically detect its pulse profile. In this simulation, GPS x-ray detectors were

simulated to have accuracies on the order of 1.8 m while solely observing the Crab

Pulsar. Block 3 simulated a reestablishment of PRs and therefore TDOA observation

use was discontinued for the remainder of the 24 hour simulation.

Figure 4.13 depicts the comparison between PR-only based outage scenarios

and outage scenarios where TDOA observations were allowed. The results of this

experiment seem to say that using one pulsar that can be accurately timed to the

order of 1.8 m may be sufficient to sustain manageable SISREconstellation needs until

pseudoranges can be reintroduced.

4-31



Figure 4.13: Comparison of SISREconstellation values during
GPS Ground Station Outages. Scenarios 3a, 3b,
3c, 3d, 3e represent PR-only outages of 22 hrs,
20 hrs, 18 hrs, 15 hrs, 10 hrs respectively. Sce-
narios 3k, 3l, 3m, 3n, 3o represent PR + TDOA
outages of 22 hrs, 20 hrs, 18 hrs, 15 hrs, 10 hrs
respectively using only the Crab Pulsar.

Overall results from these two experiments seem to indicate that from a constel-

lation perspective, the use of TDOA observations in the absence of pseudoranges can

sustain the observability needed for the batch filter to maintain the satellite geometry.

It is important to note that in reality, a ground station outage would not create such

catastrophic results in such a short time period. The real OCS, in the event of a total

communications blackout, would be able to draw on past state vector data via the

Kalman filter and use that data to propagate the satellite states forward in time (see

Chapter 2). Using the Kalman filter, it is estimated that the OCS could predict the

satellite state vectors for at most two weeks without an update in information [30]

(although with a degradation in accuracy). Consequently for this simulation to mirror

reality, the use of a Kalman filter and a longer outage time period would be neces-

sary to simulate the real effects of an outage. However, the results of this simulation

do demonstrate that TDOAs could be used to aid a filter in the maintenance of a

reasonable SISRE level for the GPS constellation.
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As with previous tests, the results of each scenario, embodied in their respec-

tive SISREconstellation value, were checked against their corresponding σconstellation es-

timates. Figure 4.14 plots the σconstellation values for the three sets of scenarios as a

function of the outage times.

Figure 4.14: Comparison of 4-state (position and bias)
σconstellation values during GPS Ground Station
Outages. Scenarios 3a, 3b, 3c, 3d, 3e represent
PR-only outages of 22 hrs, 20 hrs, 18 hrs, 15
hrs, 10 hrs respectively. Scenarios 3f, 3g, 3h, 3i,
3j represent PR + TDOA outages (16 pulsars)
of 22 hrs, 20 hrs, 18 hrs, 15 hrs, 10 hrs respec-
tively. Scenarios 3k, 3l, 3m, 3n, 3o represent PR
+ TDOA outages (Crab Pulsar) of 22 hrs, 20
hrs, 18 hrs, 15 hrs, 10 hrs respectively.

One interesting result of this comparison is that at outage values of 20 and 22

hours, the scenarios using 16 pulsars seemed to have a lower estimate uncertainty than

the scenarios that used 1 pulsar. However, at outage values of 10, 15, and 17 hours

scenarios using 1 pulsar had the lower σconstellation values. One possible explanation for

this phenomenon is that at a certain outage threshold, the GPS constellation needs

the benefit of variable pulsar positions which in turn add more TDOA measurements

to maintain observability. This result seems to indicate that in the event of a long

PR outage, a geometry of multiple pulsars may be more important than the strong
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timing characteristics of one pulsar. The reason for this behavior may be that in the

scenarios using 16 pulsars, the filter is benefiting more from the information gathered

via the dispersed TDOA geometry. Over time, a variable geometry may be more

important to maintaining constellation observability. Another possible explanation

is that there are along-track and cross-track data biases that are deweighted in the

SISRE equations, so consequently they would not show up in the SISREconstellation

results. However these biases may be appearing in σconstellation because they receive

equal weighting compared to the radial error and the clock bias.

4.6 Test 4: Pulsar Geometry and TDOA Transmitter Experiment

The final experiment attempted to optimize the decrease in SISRE by analyzing

possible pulsar geometries that could minimize SISRE levels. However, two factors

obviated the need for this test to be conducted as originally stated.

First, the test conducted in Section 4.4 indicated that numerous pulsars were

not needed to dramatically decrease SISRE levels. The most significant contributing

factor that leads to a decline in SISRE seems to be σTOA, the accuracy to which a

detector can measure pulsar pulses. The σTOA directly contributes to the accuracy

of the TDOA which indicates that SISRE decrease is directly related to an increase

in TDOA accuracy. With moderate (≈ 13.4 m) or better accuracies in measuring 1

pulsar, the results are very competitive to measuring 16 pulsars with nominal (≈ 40 m

) or worse accuracies. Therefore, unless several pulsars are able to be detected to an

equivalently accurate degree (which seems unlikely because of individual pulsar traits

such as HWHM, flux,etc.), there is no need to augment the observation geometry.

Additionally, research of the pulsar RA/Dec positions reveals that the 16 pulsars

used were already in a favorably diverse geometry. Figures 4.15 and 4.16 display

the pulsar RA and Declination coordinates of each pulsar respectively. The figures

indicate that on the RA axis the pulsar are well spread around the Earth. In terms of

declination, there are a desired equal number of pulsars above and below the ecliptic

(Declination = 0 deg).
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Figure 4.15: Pulsar Right Ascension Coordinates (deg)

It is for these reasons that the last experiment was ultimately modified to sim-

ulate the TOA accuracies that may be engineered for man-made transmitters closer

to Earth. These artificial transmitters were all given the measurement accuracy of

typical simulated pseudoranges (1.05 m). Scenarios 4a – 4c simulated 3 variable geom-

etry case studies. The purpose of these studies was to observe the effects of obtaining

TDOA measurements on several separate axes and determining their corresponding

effect on SISREconstellation values. The goal of the experiment was to be able to isolate

the effects of TDOAs on the errors in separate dimensional planes (ECI based X, Y,

Z ) based on placing TDOA transmitters in different spacial orientations.

As a baseline, the three TDOA transmitters were first placed within 5 degrees

of each other (scenario 4a). It was postulated that this geometry would be the most

unfavorable because all of the TDOAs obtained would produce duplicated information

about the relative distances between satellites. Next the transmitters were placed

on the ecliptic at 120 degree increments (RA = 0 deg, 120 deg, 240 deg) around
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Figure 4.16: Pulsar Declination Coordinates (deg)

the earth (scenario 4b). In scenario 4c, the transmitter’s were placed in orthogonal

positions with respect to the center of the earth. Two transmitters were placed on

the ecliptic at 90 degrees apart in terms of their RA. The third transmitter was

placed at a declination of 90 degrees (above the North pole). It is important to

note that the geometry which stationed a transmitter at a declination of 90 degrees

(above the North Pole) is operationally infeasible but serves to show the effects of

multiplanar TDOAs on a batch estimation problem. It was predicted that the most

favorable geometries would be the ones where the three transmitters were orthogonal

because TDOA information was being supplied in two dimensions thus giving the

filter additional data for satellite estimations.

Figure 4.17 shows the results of these 3 scenarios as a bar chart. Surprisingly,

the best overall geometry seemed to be a planar 120 degree geometry in terms of

which geometry yielded the lowest relative SISREconstellation.
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Figure 4.17: Plot of SISREconstellation values for Scenarios 4a
- 4c. TDOA Transmitter Locations (RA/Dec)
(deg): Scenario 4a (0/0; 5/0; 355/0), Scenario
4b (0/0; 120/0; 240/0), Scenario 4c (0/0; 90/0;
0/90).

To further verify the optimal effects of having 3 transmitters 120 degrees apart,

the errors (estimate - truth) in the ECI frame were calculated for each scenario’s

geometry. An attempt was made to correlate the differing ECI positions of the TDOA

transmitters with an improvement or degradation in the errors for the X, Y, and Z

ECI axes. The position of each of the transmitters was first rotated to the ECI frame.

Subsequently, the errors in the X, Y, Z axes were calculated in order to be directly

compared to one another.

Table 4.8 depicts the errors for each axis for each scenario along with the percent

improvement of scenarios 4b and 4c over the baseline scenario 4a. Theoretically,

because scenario 4b had the lowest SISRE, the errors in X, Y, and Z should also be

the lowest out of all the scenarios.
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Table 4.8: Errors Along X, Y, and Z Axes (ECI) and Percent
Improvements over Scenario 25

Scenario X Error X-Axis Y Error Y-Axis Z Error Z-Axis
(Constellation RMS) % Improvement (Constellation RMS) % Improvement (Constellation RMS) % Improvement

4a 0.327 m - 0.326 m - 0.389 m -
4b 0.030 m 90.9 0.023 m 92.9 0.035 m 89.3
4c 0.171 m 47.7 0.210 m 35.8 0.139 m 57.5

As predicted, the data in Table 4.8 shows that on each axis, Scenario 4b (each trans-

mitter 120 degrees apart) allows the batch filter to better estimate the positions of

each GPS satellite better than any other geometry.

The covariance estimates, σconstellation, for each of the five variable geometry

scenarios corroborated the results of Figure 4.17 and Table 4.8 above. Table 4.9 lists

the σconstellation values. The lowest σconstellation value came from scenario 4b which

correspondingly had the lowest SISREconstellation value. It is important to note that

scenarios 4a – 4c were run in a separate random seed environment than the scenarios

for Tests 1 – 3. Therefore these SISREconstellation values should not be compared to

the previous tests. The relative SISREconstellation differences between the scenarios of

this test are the important factors of these results.

Table 4.9: Comparison of σconstellation Values for Scenarios 4a
– 4c

Scenario 4a Scenario 4b Scenario 4c
σconstellation 0.209 m 0.063 m 0.069 m

The results above came as a surprise during analysis, because it was initially pos-

tulated that the GPS constellation would benefit more from a 3-dimensional TDOA

geometry than from TDOAs only garnered in a single plane. Scenario 4c, which placed

a transmitter on an orthogonal axis, was thought to be superior to scenarios 4a and

4b because additional information from another dimension was being supplied to the

filter. However, the results show that a planar 120 degree geometry is preferred to all

geometries tested because of its relatively low SISREconstellation and σconstellation.
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One possible explanation is that an orthogonal (North pole) transmitter actually

contributes less to the GPS constellation because as the GPS satellites orbit with an

inclination of 55 degrees, the orthogonal transmitter periodically loses visibility with

the satellites in their orbit and thus the filter is forced to estimate state vectors with

less information.

The results however, do seem to indicate that a one-to-one correlation cannot be

drawn between errors on one specific axis and the addition of TDOAs in that direction.

The 120 degree geometry may be better because it is feeding the filter information

it needs to solve the entire network estimation problem more accurately. If all of the

different estimated parameters are correlated then each TDOA measurement cannot

be treated as an independent measurement. Every parameter is affected when any

knowledge about the states is obtained through the addition of TDOA measurement

information. Ultimately, because every parameter is being estimated at once, the

network cannot be easily dissected to analyze one specific attribute.

4.7 Summary

This Chapter presented the results and analysis of the simulation. Accuracy

metrics SISREsatellite, SISREconstellation, and estimate covariance, σconstellation, were

introduced. Next simulation initial conditions and overall simulation assumptions

were discussed. The basic structure of a simulation scenario was then described.

Next, the use of Matlab’sr pseudo-random number generator was explained. Finally,

the results and analysis from Tests 1 – 4 was presented. Chapter 5 will summarize

the results of this chapter and make recommendations for further research.
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V. Conclusions and Recommendations

This chapter summarizes the research results of the navigation potential of pulsar-

based TDOAs. Following this, future algorithm development and testing is

recommended to further explore using pulsars and TDOAs to increase the accuracy

of GPS satellite orbit determination methods.

5.1 Summary of Results

This section summarizes the test results presented in Chapter IV. Analysis

results will be presented according to the research objectives stated in Chapters 1

and 3.

• Quantify impact of using pulsars to decrease the GPS SISRE to levels

lower than pseudorange-only based SISREs

Test 1 demonstrates that TDOAs, based on pulsar x-ray observations, can lower

the SISRE of the GPS constellation as a whole. Individual SISREsatellite values

displayed a variability that made it difficult to ascertain SISRE improvement on

a satellite-by-satellite basis. SISREsatellite values appear to be functions of the

number of random seed samples used. Therefore overall SISRE improvement

was based on SISREconstellation.

Results indicate that a marginal SISREconstellation improvement 1.03% can be

achieved if the x-ray detector is accurate to an order of 40 m. Test 1 results also

indicate that increasing the accuracy of the x-ray detector is an effective way to

lower GPS constellation SISRE. For example, detectors with accuracies on the

order of 0.4 m yielded a percent improvement of 25.9% over the pseudorange-

only based GPS system.

• Conduct a tradeoff study to determine how many pulsars are needed

to make pulsar measurements a significant contributor to SISRE de-

crease
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The results of Test 2 illustrate that the magnitude of the SISRE for the GPS

constellation is driven by the pulsar with the strongest timing statistics (i.e.,

lowest σTOA). SISREconstellation values remained essentially unchanged when the

number of pulsars used to create TDOAs was successively paired down from 16

pulsars to 1 pulsar. This is due to the fact the strongest pulsar (combination

of low pulse period and highest flux) had a σTOA that was, at times, orders of

magnitude lower than the any other pulsar. The disparity in σTOA magnitude

caused its resultant TDOA observations to dominate in the batch filter. The

value of the SISREconstellation for the scenarios in Test 2 varied marginally, rang-

ing from 0.916 m (16 pulsars) to 0.911 m (1 pulsar). It may be possible to infer

from this experiment that using only one pulsar, which can be very accurately

timed, may be equivalent to or better than using tens of pulsars with very weak

timing statistics.

• Analyze possible advantages of using pulsars in certain galactic ge-

ometries in the attempt to decrease the SISRE

A plot of the Right Ascension/Declination coordinates of the 16 pulsars used in

the simulation illustrated a pulsar geometry that was equally spread around the

Earth as well as evenly dispersed above and below the ecliptic (declination = 0

deg). Therefore the results of Test 3 show that adding 15 faint (combination of

high pulse period and low flux) pulsars to the TDOA geometry of 1 accurately

timed pulsar does not aid in lowering SISRE.

Test 4 investigated the effects of multiplanar TDOAs on the behaviors of the

GPS constellation X, Y, Z errors. Multiplanar TDOAs were generated by arti-

ficially placing 3 transmitters at various geometries around the Earth. Analysis

of the results indicate that 3 transmitters placed at 120 deg increments (RA/Dec

(deg): 0/0, 120/0, 240/0) around Earth’s ecliptic created optimal geometry con-

ditions (i.e., lowest SISREs and X, Y, Z errors) when compared to putting 3

transmitters in orthogonal directions with respect to the Earth.
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• Study the use of pulsars measurements in the absence of pseudoranges

Test 3 investigated the utility of using TDOAs to maintain GPS SISREconstellation

values in the absence of pseudoranges for 10 – 22 hours in a 24 hour simulation.

The results indicate that using TDOAs in the absence of pseudoranges for a

limited amount of time may aid the OCS in keeping track of the GPS satellites

until the ground station links to the constellation can be reestablished. Sce-

narios in which pseudorange outages were supplemented with TDOAs from 16

pulsars versus scenarios in which no observations were available were compared.

The TDOA supplemented scenarios showed improvements of greater than 100%

(22 hours) to 1.6% (10 hours) over their no-observation scenario counterparts.

Preliminary analysis shows that when 16 pulsars are used to create TDOAs

(accurate to, at best, 40 m), the benefits of using TDOAs is more evident when

outages are 20 hours or more. Additionally, Test 3 results corroborated the

results of the parametric study conducted in Test 2 concerning the number of

pulsars needed to achieve SISRE improvements. Test 3 also illustrated that

using 1 pulsar with moderate timing accuracy statistics (≈ 8 m), can achieve

SISRE levels as good as or better than the SISRE magnitudes observed using

16 pulsars with nominal timing statistics (≈ 40 m).

5.2 Future Work

The future work recommendations are divided into two sections: (1) simula-

tion/algorithm development, and (2) system testing. Each of these are discussed

below

5.2.1 Recommendations for Future Work. After developing and analyzing

the results, many suggestions for improving the system and expanding the research

are available. The two primary goals of simulation development should be to produce

SISRE values that approximate operational SISRE results and to create pulsar models
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that are more consistent with their observed characteristics. The principal areas

requiring additional development are:

• Incorporate Ground Station Clocks in Estimation Model

• Implement a Kalman Filter in Estimation Algorithm

• Improved Error Model

• Improved Pseudorange observation algorithm

• Improved TDOA observation algorithm

• Substitute HWHM approximation for real measured values

• Incorporate Ground Station Clocks in Estimation Model

Incorporating ground station clocks into the batch filter would fundamentally

change the estimation problem of this research. Operationally, the ground sta-

tion clocks are estimated by the filter because they are not assumed to be perfect.

Therefore, in order to more closely approximate reality, the satellite position,

velocity and clock states must be estimated simultaneously with the clock states

of each ground station.

• Implement a Kalman Filter in Estimation Algorithm

As discussed in Chapter 2, there are fundamental differences between the batch

filter used in this simulation and the sequential Kalman filter used by the OCS.

One advantage of using a Kalman filter to estimate the states of the GPS satel-

lites is that a Kalman filter can use information from past estimates to formulate

a more accurate current estimate. Using a Kalman filter in this simulation would

allow the SISRE results, especially those results found in the outage scenarios

of Test 3, to more closely depict reality.

• Improved Error Model

Two separate areas of the simulation that would benefit from more accurate er-

ror models are the orbit propagator algorithm and the operational pseudorange

generator algorithm. This simulation implemented an error-free 2-body orbit

propagator which does not closely align with reality. Ideally, in order to generate
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operational-like SISREs, the simulation would implement an error model that

approximated error growth on the order of that observed by the OCS’s Kalman

filter. However, this does not mean that every deterministic error accounted for

by the OCS Kalman filter should be modeled. Instead, this simulation should

strive to model the stochastic errors (e.g., y-axis bias, etc.) that must be approx-

imated by the Kalman filter. It is recommended that the magnitude of these

small stochastic errors be approximated by first implementing an Earth geopo-

tential model (e.g., EGM96) in the truth model’s orbit propagator. Next, a

truncated geopotential model should be incorporated into the batch filter which

would simulate an imperfect approximation of the truth model’s geopotential.

The amount of truncation between the truth model and batch filter could be set

to approximate the combined magnitude of all the stochastic force accelerations

experienced by each GPS satellite.

Additionally, the real multipath and receiver errors observed by the OCS and

GPS receivers will tend to be time-correlated. The multipath and receiver errors

modeled in this simulation did not account for this time correlation. In order to

produce pseudorange observations that closely resemble real pseudoranges, the

time correlation nature of these errors should be modeled.

• Improved Pseudorange observation algorithm

In order to create more realistic pseudorange observations, W, the the mea-

surement weighting matrix, will need to be modified. In this simulation, all

pseudorange observations were given equal weighting. In reality, the pseudo-

ranges measured at low-elevations will generally have larger errors associated

with them because the signals must propagate through a larger volume of at-

mosphere [30]. Therefore, it is recommended that the batch filter be modified

to account for the elevation-dependent accuracy of the measured pseudoranges

using a varied weighting scheme in the W matrix.

• Improved TDOA observation algorithm
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In order to create more realistic TDOA observations, R, the measurement covari-

ance matrix, will need to be modified. There is a correlation between TDOA

measurements at a given epoch, because they all share the same base satel-

lite. This will lead to cross-correlation terms in the R matrix. These cross-

correlations were not accounted for in the current simulation.

Additionally, the a new visibility scheme will need to be generated in order to

generate TDOAs using man-made transmitters situated around the Earth. The

pulsar visibility scheme assumed infinite distance with respect to the MEO al-

titude GPS satellites. Transmitters possibly stationed in a geosynchronous or

cislunar orbit could not make the infinite distance assumption. Therefore, the

total number of TDOA observations could vary because of Earth blockage of

TDOA signals.

• Substitute Pulsar HWHM Approximations for Real Measured Values

The HWHM for each pulsar was approximated in this simulation as a fraction

of the pulse period. In reality, each pulsar has a naturally occurring HWHM

that can be measured. The ability of this simulation to model an operational

x-ray detector was limited by the HWHM approximations for each pulsar. In

order to achieve more realistic detector σTOA values, it is recommended that

real (measured) pulsar HWHM values be used.

5.2.2 System Testing. This section outlines additional testing to further

research presented in this Thesis. The four main areas to expand upon are:

• Using Black Holes as x-ray Transmitters

• Using Earth Orbiting Satellite Assets as TDOA signal transmitters

• X-ray/TDOA Detector Development

• Using Black Holes as X-ray Transmitters

An alternative to using pulsar-based x-ray signals to generate TDOAs would

be to use x-ray signals from black hole sources to create TDOA observations.
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X-ray signals from black holes are typically aperiodic (as opposed to the period

signals from pulsars), which because of signal cross-correlation, is advantageous

for creating TDOAs between two detectors.

• Using Earth Orbiting Satellites as TDOA Signal Transmitters

A feasibility study should be conducted to ascertain the advantages of using

man-made Earth orbiting satellites to create TDOA observations. The prelimi-

nary results of this simulation indicate that the majority of the pulsars are too

faint to create useable TDOAs using a detector that could feasibly be attached

to a GPS satellite. However, this simulation could be modified to simulate sig-

nal transmitters in an Earth orbit (e.g., geosynchronous). Using transmitters

closer to the GPS constellation would be advantageous because it is theorized

that the detector used to generate those TDOA measurements would be much

smaller than the x-ray detector necessary for pulsar-based TOAs. Using cur-

rent technology, it is reasonable to assume that satellites designed for another

mission (e.g., communication assets, etc.) could be outfitted with the ability

to transmit signals that are engineered to be specifically used by GPS in the

event of a complete ground station black out. These assets could have other

primary missions. However, in times of emergency or, if increased user accuracy

was desired, these satellite assets could activate a TDOA-optimal signal for use

by the GPS satellites. These signals, which could be engineered to have the

accuracy of pseudoranges (on the order of 1 m), have already been proven by

this study to be of great help in lowering SISRE for the constellation.

• X-ray/TDOA Detector Development

Once the simulation is able to duplicate operational SISREs and more closely

model the observed characteristics of pulsars, an engineering tradeoff study

should be performed to determine realistic specifications of an x-ray detector

that could be attached to a GPS satellite. Engineering tradeoffs would need
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to be made primarily between the size of the detector and its desired accuracy

based on the σTOA equation presented in Chapter 2.
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Appendix A. GPS Satellite State Vectors

This section provides the complete set of initial state vectors for the 29 GPS satellites.

Table A.1: Position State Components at Epoch for PRN’s 1
– 15

PRN X Y Z
1 2817.521102 -14600.538964 22163.008123
3 15163.432538 -12009.542515 -18197.696199
4 -15779.438286 32.367963 21414.987878
5 -1474.333893 21346.885766 15705.286273
6 18952.219524 13222.464156 13406.318497
7 -26071.606507 60.179616 4991.986472
8 -16528.978241 -9478.738892 -18831.610277
9 4451.485543 25535.991272 -7077.597942
10 -16406.899639 20589.003872 -2154.792449
11 -6778.025885 -25085.884478 -5867.707499
13 -20551.854149 -12043.745365 11612.646062
14 26172.201547 2426.408289 3820.913833
15 15631.122714 394.877520 -21712.264618
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Table A.2: Position State Components at Epoch for PRN’s
16 – 31

PRN X Y Z
16 19244.837556 -17830.655909 4120.080050
17 -4004.020865 23364.107861 12937.663667
18 12485.425474 8739.659561 -21699.744876
19 2249.602308 -15064.534421 -21647.310638
20 445.290781 -19602.246117 17836.842472
21 15097.643462 17588.509224 -13374.791316
22 19597.856243 -2588.164317 -17591.472699
23 -7016.355234 -15688.425837 20170.572099
24 -10496.446586 13903.582011 20325.899433
25 14520.404147 -6013.661410 21782.964897
26 -5957.461092 13835.571622 -22114.177069
27 -15961.606040 -18158.503959 -11019.087448
28 -19314.701391 3226.249962 -17590.172237
29 -11168.355879 12096.628220 -20565.654235
30 8445.437509 13677.054742 20920.732062
31 -26152.308981 -5240.775579 -2167.289626

Table A.3: Velocity State Components at Epoch for PRN’s 1
– 15

PRN Ẋ Ẏ Ż
1 2.705497 0.594387 0.045711
3 2.272755 0.470713 1.616071
4 -0.793714 -2.594449 -0.549807
5 -1.394713 1.479347 -2.105884
6 -1.692515 -0.011693 2.428269
7 -0.532314 -0.435636 -3.045444
8 -0.577047 -2.268929 1.632951
9 -0.534676 -0.684044 -2.964383
10 -0.359544 0.038434 3.220130
11 0.702129 0.495344 -2.917111
13 1.489672 0.115122 2.748301
14 0.428398 0.309150 -3.166256
15 0.660545 2.620088 0.500756
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Table A.4: Velocity State Components at Epoch for PRN’s
16 – 31

PRN Ẋ Ẏ Ż
16 -0.127125 0.569511 3.121224
17 -0.484726 -1.509850 2.544852
18 -1.878071 2.030136 -0.286573
19 2.697643 0.652678 -0.179250
20 1.601396 -1.630301 -1.824455
21 0.270276 1.671101 2.464245
22 -1.453246 1.744332 -1.857164
23 2.555730 0.382223 1.171314
24 -0.795540 -2.387291 1.248499
25 1.086379 2.454604 -0.046689
26 -2.672138 -0.599707 0.408375
27 -0.324558 -1.445427 2.681290
28 1.372630 -1.839101 -1.854208
29 -2.613872 -0.534806 1.100780
30 -1.761783 2.068776 -0.623240
31 0.277164 -0.293466 -3.083186

Table A.5: Bias and Drift State Components for PRN’s 1 –
15

PRN af0 af1
1 3.5858154300e-004 3.6379788070e-012
3 3.5285949710e-005 3.6379788070e-012
4 -2.5177001950e-004 -1.4551915230e-011
5 4.3869018550e-005 3.6379788070e-012
6 3.6525726320e-004 3.2741809260e-011
7 4.0817260740e-004 -2.1827872840e-011
8 -6.6757202150e-006 0.0000000000e+000
9 -5.9127807620e-005 -3.6379788070e-012
10 4.8637390140e-005 0.0000000000e+000
11 1.4114379880e-004 3.6379788070e-012
13 -2.3841857910e-005 0.0000000000e+000
14 -2.4795532230e-005 0.0000000000e+000
15 3.0612945560e-004 3.6379788070e-012
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Table A.6: Bias and Drift State Components for PRN’s 16 –
31

PRN af0 af1
16 7.6293945310e-006 0.0000000000e+000
17 -1.2493133540e-004 -1.0913936420e-011
18 -6.4849853520e-005 -3.6379788070e-012
19 -1.2397766110e-005 3.6379788070e-012
20 -1.3256073000e-004 3.6379788070e-012
21 7.8201293950e-005 0.0000000000e+000
22 1.6212463380e-005 0.0000000000e+000
23 1.4686584470e-004 1.0913936420e-011
24 4.9591064450e-005 3.6379788070e-012
25 7.3432922360e-005 0.0000000000e+000
26 1.9264221190e-004 1.4551915230e-011
27 3.6430358890e-004 1.8189894040e-011
28 4.0054321290e-005 0.0000000000e+000
29 3.6716461180e-004 -7.2759576140e-012
30 5.5503845210e-004 0.0000000000e+000
31 2.8991699220e-004 1.0913936420e-011
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Appendix B. Pulsar Flux Calculation

Figure B.1 displays a table of pulsars from reference [36]. The ninth column lists the

pulsar flux in units of ergs/cm2/s. PSR J0030+0451’s energy based flux of 1.27 ×
10−13 ergs/cm2/s can be converted to a photon-based flux with the following proce-

dure.

1. First find the Observation Band (Obs Band) used by the detector to measure

the flux. The Obs Band is the energy band of the observation from which the

fluxes are calculated [36]. Because there are a range of values for the Obs Band

nominal value must be chosen. It is common practice to choose a value near

the lower end of the Obs Band because most photons reside in the lower end

of the energy spectrum because at higher energies, the photons are absorbed

by the interstellar medium, etc. [38]. For this sample calculation .5 keV/photon

will be used. The Obs Band value must now be converted into units that are

compatible with the energy based flux value of 1.27 × 10−13 ergs/cm2/s. Using

the standard energy conversion factor of 1.6 × 10−9 ergs/keV the Obs band is

converted.

.5keV/photon · 1.6× 10−9ergs/keV = 8× 10−10ergs/photon (B.1)

2. Next use the converted Obs Band value to convert the pulsar flux into photons/cm2/s.

1.27× 10−13ergs/cm2/s

8× 10−10ergs/photon
= 1.59× 10−4photons/cm2/s (B.2)

An analogous procedure is followed when the flux value was not available and

only the pulsar’s luminosity was listed. The luminosity of a pulsar indicates how

much energy is emitted from the source over a given amount of time. The units of

luminosity are typically expressed as ergs/s. In order to glean a value of flux, ergs/s

must be converted to ergs/cm2/s and subsequently to photons/cm2/s for the detector.

Figure B.2 displays Table 1.1 from [51]. Column 8 displays the pulsed luminosity for
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Figure B.1: Table of Pulsar Fluxes
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Figure B.2: Table of Pulsar Luminosities

each pulsar. To convert luminosity into a flux, the luminosity must be divided by the

surface area of a sphere to account for the photons emitted from the surface area of

the pulsar arriving at the Earth.

The luminosities were converted to fluxes using a modified version for the surface

area for a sphere

Flux =
(Lx)

p

4πd2
(B.3)

where

(Lx)
p is the pulsed X-ray luminosity from a pulsar in units of ergs/s

d is the approximate distance from the pulsar to the Earth in units of kilopar-

secs (kpc)
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The distance (d) must be converted into cm to yield units of ergs/s/cm2. Once

the luminosity was converted into a flux value, Equations (B.1) and (B.2) were used

to convert the ergs-based flux value into a photon-based flux.

B-4



B-5



Bibliography

1. ARINC Research Corporation. ICD-200C: Navstar GPS Space Segment/Naviga-
tion User Interfaces . Technical Report, United States Air Force, 1993.

2. Arsenault, T., “Navstar GPS Constellation Status,” August 2004. Depart-
ment of Geodesy and Geomatics Engineering University of New Brunswick
(http://gge.unb.ca/HomePage.php3).

3. Becker, W. and J. Trumper. “The X-ray emission properties of millisecond pul-
sars,” Astronomy and Astrophysics , 341 :803–817 (1999).

4. Becker, W. and J. Trumper. “X-ray emission from Isolated Neutron Stars,” Ad-
vances in Space Research, 21 :203–211 (1998).

5. Brown, Kenneth R. “Characterizations of OCS Kalman Filter Errors.” Proceed-
ings of the ION GPS-91 . 148–158. September 1991.

6. Brown, Kenneth R. “The Theory of the GPS Composite Clock.” Proceedings of
the ION GPS-91 . 223–241. September 1991.

7. Brown, R., and P. Hwang. Introduction to Random Signals and Applied Kalman
Filtering . New York: John Wiley and Sons Inc., 1983.

8. Chapman, Stephen. MATLABr Programming for Engineers . California: Brook-
s/Cole, 2002.

9. Chester, T.J. and S.A. Butman. Navigation Using X-ray Pulsars . Technical
Report, NASA, June 1981. N81-27129.

10. Codik, Andrew. “Autonomous Navigation of GPS Satellites: A Challenge for the
Future,” Navigation: Journal of The Institute of Navigation, 32 (3):221–232 (Fall
1985).

11. Conley, R. “Results of the GPS JPO’s GPS Performance Baseline Analysis: The
GOSPAR Project.” ION GPS-97; Proceedings of the 10th International Technical
Meeting of the Satellite Division of the Institute of Navigation. September 1997.

12. Crum, J.D., S.T. Hutsell, and R.T. Smetek. “The 2SOPS Ephemeris Enhance-
ment Endeavor (EEE).” Proceedings of the 29th Annual Precise Time and Time
Interval (PTTI) Applications and Planning Meeting . December 1997.

13. Cusumano, G., E. Massaro, and T. Mineo. “Timing Noise, Glitches and the
Braking Index of PSR B0540-69,” Astronomy and Astrophysics , 402 (May 2003).

14. Divine, Dwight, III and Sherman G. Francisco. “Synchromesh, A Practical En-
hancement to GPS Service.” IEEE 1984 Position Location And Navigation Sym-
posium. 169–174. November 1984.

BIB-1



15. Downs, G.S. Interplanetary Navigation Using Pulsating Radio Sources . Technical
Report, NASA, October 1974. NASA Technical Reports, N74-34150.

16. Eggert, Ryan J. Evaluating the Navigation Potential of the National Television
System Committee Broadcast Signal . Masters Thesis, Air Force Institute of Tech-
nology, 2004.

17. Eikenberry, S.S., G.G. Fazio, S.M. Ransom, J. Middleditch, J. Kristian, and C.R.
Pennypacker. “Infrared-to-Ultraviolet Wavelength-dependent Variations Within
the Pulse Profile Peaks of the Crab Nebula Pulsar,” The Astrophysical Journal ,
467 (1996).

18. Halsell, Charles A. Orbit Determination of the Global Positioning Satellite System
using Inter-Satellite Range Measurements . Masters Thesis, University of Texas
at Austin, December 1984.

19. Hanson, J.E. Principles of X-ray Navigation. Doctoral Dissertation, Stanford
University, 1996.

20. Hay, Curtis. “The GPS Accuracy Improvement Initiative,” GPS World , 56–61
(June 2000).

21. Hutsell, Steven T. “Fine Tuning GPS Clock Estimation In The MCS.” 26th An-
nual Precise Time and Time Interval (PTTI) Applications and Planning Meeting .
63–74. December 1994.

22. Kaspi, V.M. “High-Precision Timing of Millisecond Pulsars and Precision As-
trometry.” Astronomical and Astrophysical Objectives of Sub-Milliarcsecond Op-
tical Astrometry . August 1994. Proceedings of the 166th Symposium of the
International Astronomical Union.

23. Kelso, T.S., “GPS Yuma Almanac.” http://celestrak.com/GPS/, August 2004.
http://celestrak.com/GPS/almanac/Yuma/2004/almanac.yuma.week0259.589824.txt.

24. Langley, R.B., H. Jannasch, B. Peeters, and S. Bisnath. “The GPS Broadcast
Orbits: An Accuracy Analysis.” 33rd COSPAR Scientific Assembly, Session B2.1-
PSD1, New Trends in Space Geodesy . July 2000.

25. Lochner, James, “The Rossi X-ray Timing Explorer Learning Center,” August
2001. http://rxte.gsfc.nasa.gov/docs/xte/learning center/index.html.

26. Logsdon, Tom. The Navstar Global Positioning System. New York, New York:
Van Nostrand Reinhold, 1992.

27. Lorimer, D.R. Binary and Millisecond Pulsars at the New Millenium. Technical
Report, Arecibo Observatory and Max Planck Institute for Gravitational Physics,
June 2001. www.livingreviews.org/Articles/Volume4/2001-5lorimer.

28. Lyne, A.G. and F. Graham-Smith. Pulsar Astronomy . New York, NY: Cambridge
University Press, 1998.

BIB-2



29. Malys, S., M. Larezos, S. Gottschalk, S. Mobbs, B. Winn, W. Feess, M. Menn,
E. Swift, M. Merrigan, and W. Mathon. “The GPS Accuracy Improvement Ini-
tiative.” Proceedings of the 10th International Technical Meeting of the Satellite
Division of the Institute of Navigation. 375–384. September 1997.

30. Misra, Pratap and Per Enge. Global Positioning System; Signals, Measurements,
and Performance. Lincoln, Massachusetts: Ganga-Jamuna Press, 2001.

31. National Research Council. The Global Positioning System, A Shared National
Asset, Recommendations for Technical Improvements and Enhancements . Tech-
nical Report, National Academy Press, Washington D.C., 1995.

32. Northern Lights Software Associates, “http://www.nlsa.com.”

33. Parkinson, B.W. and J.J. Spilker. Global Positioning System: Theory and Ap-
plications, Volume 1 . Washington D.C.: American Institute of Aeronautics and
Astronautics, Inc., 1996.

34. Parkinson, B.W. and J.J. Spilker. Global Positioning System: Theory and Ap-
plications, Volume 2 . Washington D.C.: American Institute of Aeronautics and
Astronautics, Inc., 1996.

35. Pines, Darryll, “3 Overview.pdf,” August 2004. https://safe.sysplan.com/
xnav/3 Overview.pdf.

36. Possenti, A., R. Cerutti, M. Colpi, and S. Mereghetti. “Re-examining the X-ray
versus spin-down luminosity correlation of rotation powered pulsars,” Astronomy
and Astrophysics , 387 :993–1002 (2002).

37. Raquet, John and David L.M. Warren. “Broadcast vs. Precise GPS Ephemerides:
A Historical Perspective,” GPS Solutions (2003).

38. Ray, Paul, “Telephone Conversations and Meetings with the Naval Research Lab-
oratory.” Naval Research Laboratory.

39. Ray, Paul and M. Wolff, “The USA Experiment,” July 2004.
http://xweb.nrl.navy.mil/usa/.

40. Ray, P.S., K.S. Wood, M.T. Wolff, M.N. Lovellette, S. Sheikh, D.S. Moon, S.S.
Eikenberry, M. Roberts, A. Lyne, C. Jordan, E.D. Bloom, D. Tournear, P. Saz
Parkinson, and K. Reilly. “Absolute Timing of the USA Experiment Using Pulsar
Observations.” American Astronomical Society Meeting 201 . 2003.

41. Rizos, Chris. Principles and Practice of GPS Surveying . Technical Report, Satel-
lite Navigation and Positioning Group, University of New South Wales, Sydney,
Australia, 1999. http://www.gmat.unsw.edu.au/snap/gps/gps.

42. R.R. Bate, D.D. Mueller and J.E. White. Fundamentals of Astrodynamics . New
York, NY: Dover Publications, Inc., 1971.

43. Sheikh, Suneel I., “Telephone Conversations and Meetings with the Space Systems
Laboratory, University of Maryland.” February 2004 - March 2005.

BIB-3



44. Sheikh, Suneel I., Darryll J. Pines, Paul S. Ray, Kent S. Wood, Michael N. Lovel-
lette, and Michael T. Wolff. “The Use of X-ray Pulsars for Spacecraft Naviga-
tion.” 14th AAS/AIAA Space Flight Mechanics Conference. February 2004. AAS
04-109.

45. Shemar, S., G. Bond, P. Edmonds, B. Ashforth, and S. Harding. “Trial Results
of a Prototype System to Locate GPS Radio Interference Sources Using Time-
Difference-Of-Arrival Measurements.” Proceedings of the ION National Technical
Meeting . 1018–1025. January 2004.

46. Splaver, Eric M. Long-Term Timing of Millisecond Pulsars . Doctoral Disserta-
tion, Princeton University, Novemeber 2004.

47. Stairs, Ingrid H. Testing General Relativity with Pulsar Timing . Technical Report,
University of British Columbia, September 2003. www.livingreviews.org/lrr-2003-
5.

48. Storz, Mark, “Private Communications.” Headquarters Air Force Space Com-
mand/XPYE.

49. Taylor, J.H. and M.F. Ryba. “High Precision Timing of Millisecond Pulsars. 1
. Long Term Monitoring of PSRs B1855+09 and B1937+21,” The Astrophysical
Journal , 371 (1991a).

50. Vallado, David A. The Fundamentals of Astrodynamics and Applications . New
York: The McGraw-Hill Companies, Inc., 1997.

51. V.M. Kaspi, M. Roberts and A. Harding. “Isolated Neutron Stars,” eprint
arXiv:astro-ph/0402136 (February 2004). To appear in Compact Stellar X-ray
Sources, eds. W.H.G. Lewin and M. van der Klis.

52. Wiesel, William E. Modern Orbit Determination. Beavercreek, OH: Aphelion
Press, 2003.

53. Wolf, Robert. Satellite Orbit and Ephemeris Determination using Intersatellite
Links. Doctoral Dissertation, University of the Federal Armed Forces Munich,
2000. http://137.193.200.177/ediss/wolf-robert/inhalt.pdf.

54. Wood, K.S. “Navigation Studies Utilizing the NRL-801 Experiment and the AR-
GOS Satellite.” Small-Satellite Technology and Applications III, Proceedings of
the International Society for Optical Engineering. 105–116. April 1993.

55. Zablotney, J.H., D.D. Husch, K.M. Rowe, and J. Discenza. “An Accurate Search
and Rescue Location System.” Proceedings of the Forty-Seventh Annual Meeting,
”Navigation and Exploration”. 459. June 1991.

BIB-4



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
21-03-2005  

2. REPORT TYPE  
Master’s Thesis     

3. DATES COVERED (From – To) 
August 2003 – March 2005 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 
     The Use of X-Ray Pulsars for Aiding GPS Satellite Orbit Determination  
   
 5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Woodfork, Dennis W., II, Captain, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
      Air Force Institute of Technology 
    Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way 
     WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GA/ENG/05-01 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
  HQ AFSPC/XPYA 
     Attn:  Dr. Robert A. Racca 
     1150 Vandenberg St, Suite 1105 
     Peterson AFB, CO 80914-4650                        DSN: 834-3714 

11.  SPONSOR/MONITOR’S 
REPORT NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
14. ABSTRACT  
This research proposes the use of an existing “signal of opportunity” – namely x-ray pulsars – to improve the accuracy and robustness of the GPS satellite and 
clock estimation algorithm.  Improvement in satellite and clock accuracy results in a direct benefit to the user.  A simulation has been developed to determine 
the effects of using x-ray pulsar measurements on the GPS Operational Control Segment.   The epoch-specific position, velocity, and clock errors of all GPS 
satellites in the constellation were estimated using both pseudoranges and time-difference-of-arrival (TDOA) measurements from pulsars.   The primary 
measure of accuracy is a constellation Signal-In-Space Range Error (SISRE).  Results indicate that marginal SISRE improvements (approximately 1%) can be 
achieved if the x-ray detector is accurate to an order of approximately 40 m for the strongest pulsar.  Increasing the accuracy of the x-ray detector by a factor 
of 100 can yield accuracy improvements up to 26% over the pseudorange-only based GPS system.  Additionally, results show that using only 1 strong pulsar 
to create TDOA observations, may be comparable to using tens of weakly timed pulsars.   Pulsar geometry analysis showed that the geometry does have a 
significant impact on the overall system performance.  Results indicate that using TDOAs in the absence of pseudoranges may aid the OCS in keeping track of 
the GPS satellites until the ground station links can be reestablished.  
15. SUBJECT TERMS 
Global Positioning System, Pulsars, X rays, Least Squares Method, Time, Arrival, Stars, Kalman Filtering                                                            

16. SECURITY CLASSIFICATION 
OF: 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. John F. Raquet  

REPORT 
U 

ABSTRACT 
U 

c. THIS PAGE 
U 

17. LIMITATION OF  
     ABSTRACT 
 
UU 

18. NUMBER  
      OF 
      PAGES 
168 19b.  TELEPHONE NUMBER (Include area code) 

(937) 255-6565, ext 4580; e-mail:  john.raquet@afit.edu 

Standard Form 298 (Rev: 8-98) 
Prescribed by ANSI Std. Z39-18 

    
 




